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Abstract. A relativistic ‘free’ particle in a one-dimensional =~ Resumen.Se considera el problema de una fmarfa ‘libre’

box is studied. The impossibility of the wavefunction relativista en una caja unidimensional. Se comprueba la
vanishing completely at the walls of the box is proven. imposibilidad de anular completamente la funcide onda en
Various physically acceptable boundary conditions that allow las paredes de la caja. Se proponen diversas condiciones de
non-trivial solutions for this problem are proposed. The frontera fsicamente aceptables que permiten encontrar
non-relativistic limits of these results are obtained. The soluciones no triviales para este problema. Se discute el

problem of a particle in a spherical box, which presents the limite no relativista de estos resultados. Tagnbi

same type of difficulties as the one-dimensional problem, is consideramos el problema de una frafa en una caja

also considered. esfrica, el cual presenta el mismo tipo de dificultades que el
problema unidimensional.

1. Introduction According to the principles of quantum mechanics,
for each quantum mechanical system one defines
In non-relativistic quantum mechanics a vanishinga Hilbert spaceH. Every measurable quantity is
normal component of the probability current is acalled an ‘observable’ (e.g. energy, momentum, angular
sufficient condition to obtain an impenetrable boundarynmomentum, etc) and has to be represented by a self-
surface. This might be accomplished by imposingadjoint operator acting oft?. One might be interested
Dirichlet, Neumann or mixed boundary conditions uponin studying the Lorentz-covariant Dirac equation with
the wavefunction. In the well known problem that covariant boundary conditions, but without losing any
we all learn in elementary quantum mechanics, theenerality, the formal Lorentz covariance of a dynamical
‘free’ particle in a one-dimensional box, the Dirichlet equation can be used to choose the privileged frame in
boundary conditionys = 0, is the simplest one. With which the intrinsic nature of the physical system is the
this boundary condition the formal ‘free Séidinger simplest one. For a particle in a box, if we want to know
Hamiltonian’ is a well defined self-adjoint operator. its energy eigenvalues, the convenient privileged frame
However, besides the above boundary condition, therts that in which the space-time Lorentz transformations
exists a family of self-adjoint extensions each labellecare frozen and the box is at rest in a determined space
by four parameters [1, 2]. region. Once we have obtained the energy spectrum
In relativistic quantum mechanics the wavefunctionin the privileged frame, the energy—momentum 4-vector
is a spinor of four complex components, which aremay be calculated in any inertial frame. So, the state of
coupled in a system of first-order differential equationsthe system is a normalized spinor, i.e. a four-component
Imposing the Dirichlet condition at the boundary is tooVector¥ € H. lIts time evolution is determined by the
restrictive; it leads to incompatibility in the relativistic family of operatorsU(r) = e™""/*. Conservation of
scattering [3] as well as in the energy eigenvaluegrobability requires the operatéf(r) to be unitary and,
problem, as will be shown below. However, non-consequently, the HamiltoniaH to be self-adjoint.
trivial solutions may be obtained by using appropriate /1 iS @ very special observable because it generates
boundary conditions for the wavefunction [4, 5], in suchthe time evolution of the states and its spectrum
a way that self-adjointness of the formal Dirac operatofépresents the energy of the system. To define the

is maintained. Hamiltonian properly, besides the formal expression

as a differential operator, its domain, in particular the
+ E-mail address: valonso@tierra.ciens.ucv.ve boundary conditions, must be specified. In fact, by
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formal expression, not to mention the risk of losing the2. One-dimensional box
self-adjointness property (see appendix A). For example,
in the Aharonov—Bohm effect, by choosing differentLet us consider a ‘free’ electron in a one-dimensional
boundary conditions, which preserve self-adjointnesshox in the intervalQ = [0, L]. The three-dimensional
one obtains different cross sections [4]; aside from othePirac equation for stationary states reads
considerations, it is the experimental arrangement which —
selects the appropriate obpservable. ’ Hoyr = (=ihca - V + m*B)yr = EY @)

In section 2 we give several physically acceptablgyhereq, g are the well known Dirac matrices.
boundary conditions, some of which were already |n this paper we restrict ourselves to positive
proposed in scattering problems [4,5]. We find non-rejativistic energies. In the Dirac representation, the

trivial solutions of the Dirac equation for a particle with four-valued Dirac spinonp can be expressed in terms
a fixed mass localized in a box. These results, as well

as the eigenvalues and eigenfunctions for a family of
self-adjoint extensions of the ‘free’ Dirac Hamiltonian gnq, — (%), respectively; that is
were obtained in [6]. x2

It is worth pointing out that, as far as we know, (¢>

f the large and small two-valued semi-spinafss (})

the problem of the several boundary conditions that Y= X 2
may be imposed for a ‘free’ particle inside a box in

relativistic quantum mechanics, has not been considered Equation (1) is equivalent to the following coupled
in the widely used textbooks for exact solutions ofequations:

the Dirac equation [7-9]. However, the problem of _

a Dirac fermion in a one-dimensional box interacting —ihco - Vx +mc*p = E¢ 3)
with a scalar solitonic potential was considered earlier —ihico - V¢ —mc*y = Ex ()]
with periodic [10], as well as with more general . .

boundary conditions [11] to elucidate the phenomenoff'hereo are the Pauli matrices. )

of fractional fermion number. For the case of the Eliminatingx from (3) and (4), and tazk'lr‘? =¢x)
Dirac ‘free’ massless operator, also if-1 dimensions, and x = x(x), with k = [E? — (mc?)*]"*/hc, one
eigenvalues and eigenfunctions were obtained for @btains

family of self-adjoint extensions in [12] and the case R

with a non-zero vector potential was examined in [13]. (@ + k2>¢,- =0
Another particular solution to this problem has been

obtained by considering the Dirac equation with awhich is independently satisfied by the large compo-
Lorentz scalar potential; here the rest mass can bgents.

thought of as an-dependent mass [9]. This allows usto  The small components may be obtained by means of

solve the infinite square well problem as a particle with(4)

a changing mass that becomes infinite outside the box,

which avoids the Klein paradox [14]. A detailed study i 0 1

of the possible boundary conditions, i.e. self-adjoint <X1> _ e d dx <¢1>. 6)

extensions, for a relativistic particle inside a box, as X2 E+mc? | 9 0 b2

well as their non-relativistic limits, has been considered dx

by two of us (VA and SDeV) and will be submitted for One of the positive energy solutions is obtained by

publication elsewhere. taking ¢, = 0 and thereforg;; = 0. From equation (5),
The principal motivation in this pedagogical note isthe general solution fop, is

to call attention to the fact that the boundary conditions ) )

used in non-relativistic quantum mechanics should not ¢1 = A1pY + Big? = A€ + B @)

be extrapolated to the relativistic case, without provinqN

beforehand that the relativistic Hamiltonian will be self-

i=12 (5)

here A; and B; are complex constants. The solutions

adjoint for them, #P and¢\? are independent and verify the following
In section 2 we verify that the Dirac spinor cannot "€lation in the intervake:

vanish at the boundary of a non-permitted region—in L dd’f) @ d¢f)

our case, the walls of a one-dimensional box. We find =1 — ¢f #0. (8)

non-trivial solutions upon imposing several boundary dx ' dx
conditions on the wavefunction. The non-relativistic From equation (6) one gets
limit of these results is also discussed. In section 3 we

o X ; Y. @ @
solve the problem of a particle in a spherical box using a X2 = —lhc <Al do; 4B dey )
boundary condition that cancels the large component of E + mc? dx dx
the spinor at the walls of the box. We propose various hick

jkx —ikx
boundary conditions that lead to non-trivial solutions. T E+me (Alé — Bie”' ) 9)
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If $(0) = (*14?) = 0 andx (0) = (Xz‘zo)) = 0 one obtains In this case, the electron is actually enclosed inside the
box—there is no particle far <0 orx > L.
the homogeneous system There are a variety of other ways of satisfying (17),

A |+ Bip?|,_,=0 (10)  even though the four components of the Dirac spinor
do® do? cannot be equal to zero simultaneously. In fact, in
Ay ! + B ! -0 (12) addition to (12), the impenetrability conditigh= 0 can
dr |, dr |, be achieved, for example, in any of the following three

the determinant of which cannot be zero due to (8). Thu§ases:$1(0) = xa(L) = 0, ¢1(L) = x2(0) = 0 and
A1 = B; = 0, that is, the only solution is the trivial one. X2(0) = x2(L) = 0. The vanishing of the relativistic
A similar result is obtained ify = 0 atx = L. current density at the walls of the box has been used
From equation (6), it can be seen that the vanishin%‘ the MIT bag model, see e.g. [15]. The relativistic
of the small component, at x = 0 is equivalent Poundary condition used in this modeHs—i)fa, v =
to dpy/dx|,_o = 0. The non-existence of non-trivial ¥, Where the minus sign corresponds o= 0 and
solutions for the given boundary condition is certainly athe plus sign tox = L. This boundary condition in
consequence of the fact that (5) is an elliptic equation, s§€ Dirac representation is precisepy(L)/¢1(L) =
that there are no non-trivial solutions if the functign =~ —x2(0)/$2(0) = i. All these conditions, which can
and its derivativey, have to vanish simultaneously at the be used if we consider the walls of the box to be
boundaries of the intervaR. Certainly, the vanishing impenetrable barriers, are self-adjoint extensions for the
of the entire relativistic wavefunction at the beginning free’ Dirac Hamiltonian. »
of an impenetrable barrier is not admissible. Though It may argued that the mixed boundary conditions
in non-relativistic quantum mechanics a vanishing?1(0) = x2(L) = 0 and ¢1(L) = x2(0) =0 are
wavefunction at the boundaries is one of the self-adjoinf'ot physical because their symmetry is not the same
extensions of the ‘free’ Hamiltonian, in relativistic at the walls of the box. In fact, the probability
quantum mechanics it is not so. Indeed, the formaflensity p is such thatp(0) # p(L); therefore
Dirac ‘free’ Hamiltonian does not have this boundarythese boundary conditions are not symmetric and
condition as one of its self-adjoint extensions. Howeverconsequently the corresponding wavefunctions exhibit
taking only the large component as zero is a physicallj2 Seét of eigenvaluesy = (N — 3)7/L with N =
acceptable boundary condition, because this condition i 2, 3. .., which are different from those of the
a self-adjoint extension aff;. wavefunction (13). In the non-relativistic limit these
In the problem of an electron inside a one-conditions correspond to a vanishing@jf“m atx =0
dimensional box, by imposing upon the large componentx = L) and a vanishing ow{NR)/dx inx =L (x =0).

$1(0) = ¢1(L) =0 (12) On the other hand, the boundary condition

one obtains inside the intervel x2(0) = x2(L) =0 (18)
i sin(kx) yields the eigenfunction i
0
v=24,| _ 0 (13) cos)
hck
E 4+ mc? costkx) v ! ihck . 49

with k = Na/L, N =1,2, ... 4 mez SNkx)

From appendix B, it can be seen that condition (12
corresponds, in the non-relativistic limit, to the familiar
condition of a vanishing wavefunction at the walls of
the box; that isg{"®(0) = ¢{"*(L) = 0. Likewise,

Mhich has the same eigenvalues as the wavefunction
(13) and satisfies the same relations (16) and (17).
In the non-relativistic limit this state corresponds to a

; - ¢ . vanishing of #"?' /dx atx = 0 andx = L. The spinor
and according to the Sdbdinger—Pauli problem, the L L o .
small components of (13) are of the order ©6l® /c (19) describes a positive energy electron; however,

R RN - i : one may consider the charge conjugate of this spinor
and kN = (2nENR)77/R, from which one obtains which has a vanishing large component, which may be
the energyE™R = (R2/2m)(Nw/L)>2. regarded as describing a negative energy positron.

The Dirac probability density and current are given It is important to emphasize that by taking
by into account only the physical symmetry (16),
_ 7 - the requirement of impenetrability (17) and the

p= ¢1¢1? thaxe ) (14) corresponding energy spectrum, one cannot distinguish

Jj=ecplay = ec(dprxz + K1) (15) between the boundary conditions (12) and (18); that
wherey! is the Hermitian conjugate spinor agds the 1S #1(0) = ¢1(L) = 0 and x2(0) = xa(L) = O.
complex conjugate op. With the boundary condition Hence, the wavefunctions (13) and (19) should be

(12), these quantities verify regarded as equivalent, although not trivially equivalent
' inasmuch as they cannot be taken one into the other
p(0) = p(L) (16) by means of a symmetry operation which commutes

jO) =jL)=0. (17)  with the Hamiltonian. Indeed, we consider that it is
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not possible to distinguish physically between these twand the energy eigenvalues are obtained frbm=
solutions, despite the fact that they exhibit different2nz/L with n = 0, +1, +2, ... for the periodic con-
probability densities. We assume that the probabilitydition and fromk = (2n — 1)7/L for the anti-periodic
prediction can be verified experimentally only in regionsone. On the other hand, taking the non-relativistic limit
ohf size Ax sufﬁcielntly large so as to comrr)]ly with of these boundary conditions, we obtaﬁéNR)(o) =
the uncertainty relationAx Ap > h/2, with Ap (NR) (NR) _ (NR)

corespondng f he quaniun siae ot ported ki 10 (WE°/G00) = (Gl where
the measurement of localization. According to this

criterion, the localization of the points, which in the peggglfhéasgtlb%ir:]%(igf) Eggg:::gzs the densitv current in
non-relativistic limit corresponds to a zero probability y y

of the stationary wave, is not possible—not to mentiort (; Olna?hc?sx c:seL tr|1$e réztrréﬁf[oét ?ﬂg t?(?)??/f/lgﬁéor)nu:st be
that, in relativistic quantum mechanics, one cannot \~’:

localize the electron in a region of size less than thd"te"Preted physically. One may say that the walls of the
Compton wavelength, because otherwise the electro Ox are transparent to the_z_partlcle, which is travelling
energy would be sufficient for pair production. Clearly, hrough the box in a condition of resonance.
L must be much larger than the Compton wavelength.

Finally, the boundary condition

x2(L) _ x2(0) i 3. Spherical box

= = (20)
¢1(L) $1(0) Let V. =0, A = 0in a spherical intervak < r < b
yields the following eigenfunction if2: with
cogkx —4/2) <¢>) 1( F(r) Y, ;. (0, 9) >
0 =\
; X iIG(r)Y;r .0,
Y = 24,6 0 (21) A GO Y6, 9)
ihck . where the two-valued semi-spino8 are ‘spinorial
£+ me? sin(kx —8/2) spherical harmonics’ of order with [ = j + 2u, 1’ =
where § = arctari—fk/mc). In this case the J — %#;M ==£lj =33 ...andj = —j.—j+
eigenvalues are obtained from the transcendentdk ---.J [16]. o .
equation tatkL) + (tk/mc) = 0. The equation for the large components in this case is
It is worth pointing out that these results are the same @k +1)
as those obtained in [14]. There the authors give a [ﬁ - +k2:|F(r) =0 (24)
r r

mathematical justification for treating the problem of a
particle absolutely confined in a box, without requiring _Ir2_ N291/2 _ S

the continuity of the wavefunction at the wall of the wherek = [E . (mc )] 1/hc’K = %(j + 3) and
box. In [14] where a scalar potential is used, the particle (¢ 1) = (j+3)(j + 1 +3) =11+1). In the non-
mass becomes infinite in the external region of the box/€lativistic limit equation (24) is the radial Sdtinger

However, we just impose adequate boundary condition§guation for free waves.

such that the Hamiltonian be self-adjoint. Equation (4) gives
Taking the non-relativistic limit of (20), as is done in fic d «
apper(\dix(NEF:; we)obtaimgd?é:;)/dx)@) = (™) (L) G(r) = Fimd (a + ;)F(r). (25)
andi(dg, " /dx)(0) = (¢, )(0). The non-relativistic . . .
energy eigenvalues are obtained from (&PL) + Solving equations (24) and (25), one finds
#k™N® /me) = 0. Obviously, by eliminating the term of [Aji(kr) 4+ B (kr)]Y;,,;,
orderv™® /¢ and allowing the size of the box to grow, v = ificku . (26)
we obtain that the spectrum, the wavefunction and the m[z‘l}w (kr) + By (kr)Y;1r .
boundary condition tend to their usual non-relativistic ) .
values [14]. where j; and n, are spherical Bessel functions and
Another way of getting a well defined self-adjoint /' =1 — . o o
problem is by extending the domain @f, to that of Also in this case, it is not admissible to make the
periodic or anti-periodic functions in the interv@l In  spinor vanish ar = a or r = b. If one setsyr(a) =
fact, we may consider 0 explicitly, one obtains a homogeneous system, the
W(0) = £y (L). 22) determinant of which is not zero due io
:’he corresponding plane-wave eigenfunctions have the Jo@Nu41(2) = Jor1(2)N(2) = — (27)
orm
1 If we want to find a non-trivial solution for this
0 problem, by analogy with the previous one, we can
v =C, 0 gk (23) propose the boundary condition that cancels the large
hck component of the spinor at the walls of the spherical

E + mc? box, ¢(a) = ¢(b) = 0. This boundary condition is
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physically acceptable and verifies the vanishing of theAppendix A
radial component of the probability current. So, one

obtains For the relativistic ‘free’ particle inside a one-
jika)  ji(kb) dimensional box with fixed walls at = 0 andx = L
= (28)  the Dirac equation for stationary states may be written
m(ka)  ni(kb) as

and the wavefunction may then be written as . d
(Hoy)(x) = (—nhcozxa + mc2ﬂ>w<x)

( Lii(kayn, (kr) — mi(ka) ji(kr)]Y; 4. )
v=C| ihckp _ = Ey(x) (A1)
————— Ljitka)ny (kr) — ni(ka) ji (kr)]Y; 1 . . . .
E +mcz[]l G " a Wirs where ¢ is the four-component column Dirac spinor
a<r=b. (29) depending onx € Q =[O0, L] and
In this case we can take the limit whem — _( 0 o _(1 0
0. jika)/m(ka) — (ka)>** — 0, so the energy “w={45 0 P={0o -1 )

eigenvalues are obtained frojnkb) = 0. In this way,

the solution for a particle localized in a sphere of radius 1 N€ SPinorsy (x) and (Hoy)(x) belong to a dense

bis proper subset of the Hilbert spate= L2(Q)® L3 (Q)®
_ L2(Q) @ L?(RQ); that is, in this subset there exists a
Jikr)Yj . basis in which to expand eveny € H, with a scalar
v =D ihcku 0<r<b. product denoted by, ). Generally the domains affy
E 3 mez o R and its adjointH; verify Dom(H,) € Dom(Hg), but

(30) Hy, must be self-adjoint, so we look for self-adjoint
extensions of the symmetric operatfly (as we shall
Since in the non-relativistic limit the small compo- define below).

nents of (30) are of the order of¥® /¢, the well known Without using the machinery of Von Neumann’s
non-relativistic energy eigenvalues, which are obtainedheory of self-adjoint extensions of symmetric operators
from j,(k™®p) = 0, are recovered. [17] and without intending to be rigorous, let us briefly

We may also consider other boundary conditions thatonsider the construction of a self-adjoint operator from
satisfy the vanishing of the radial component of thethe formal Hamiltonian

probability current at the walls of the spherical region: _ d
x(a)=x®)=0,¢() = x(®) =0,¢®) = x(a) =0. Ho = —'hcaxa +mc®p (A2)
Choosing one of these conditions is again a problem o ) )
of symmetry or physical convenience. whose initial dense domain may be written as
D={y € H,a.c.inQ, (Hyy) € H,
with ¥ (0) = ¢ (L) = 0} (A3)

4. Conclusions . . )
where a.c. means absolutely continuous functions. With

As distinguished from the non-relativistic problem, thethis domainH, is a symmetric operator; that is, for all
relativistic wavefunction at the boundaries of a non-¢-" € D,
permitted region cannot vanish entirely. A necessary gy, y) — (¢, Hon) = ihe[(¢Taun) (L) — (¢Ta,n)(0)]
and sufficient condition in order to find non-trivial

. . ; . =0. (A4)
solutions is to impose on the wavefunction boundary
conditions that make the Hamiltonian self-adjoint. For Since the quantum dynamics requitgsto be a self-
some of these conditions the probability current vanisheadjoint operator, it must be fulfilled that Daiy) =
at the walls of the box; they are just the conditions whichDom(H;), where Hg, defined by the same formal
can be used in a model of an impenetrable barrier imperator (A2), is the adjoint of the differential operator
place of the continuity of the wavefunction. By taking Ho. Its domain is defined by Do@#j) = {v €
the non-relativistic limit of the boundary conditions that 7, a.c. inQ, (Hjv) € H} with
we have considered, some already known results ar oo Tt +
recovered. We believe that the subject of this papef/et: V) — (¢ Hov) = ihe[(Zla,v)(L) — (¢axv)(0)]

may be of interest to teachers and students of relativistic =0 (AS)
quantum mechanics; as far as we know, it has not beeg, g ¢ € Dom(Ho) andv € Dom(HZ). Clearly,
sufficiently discussed in textbooks and journals. H¢ is defined on a manifold of spinors taking arbitrary

values at the end points of the interv@. So, the
boundary conditions (BC) defined by equation (A3) are
Acknowledgment incompatible with the required self-adjointnessHy.
Now the problem consists in choosing a sufficiently
The authors would like to thank the referee for usefulgeneral set of BC for which Do(#,) = Dom(Hg).
comments and suggestions. If Dom(Hy) is fixed, H will be the adjoint of Hy if
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its maximal domain is consistent with the vanishing of Substituting relations (B2) and (B3) in (B1) and
T v)(L) — (¢Ta,v)(0), for all ¢ € Dom(Hp). comparing the terms of lower order, we obtain the
Taking into account our study on the general BC forfollowing system:

this problem, we write here, as an example, the form of d ar 27 am
one of the families of BC, I£¢1 + X = 0
(B4)
$1(L) \ _ A —x2(L) d awr, E™ R 0
$:(0) %2(0) (A6) FTZCRE A
A=—Al and ¢p= 1 =0 Eliminating x5*, we obtain the eigenvalue Séfinger
equation
where o2 ,
o . —— + (k™R ] NP — 0 B5
A =i(sinu + sint cosy)~? [dx2 (KE)7 | (B5)
. ((cosu + cost cosp €7 sing where (kV®)? = 2m ENR /32,
€ sinf COSp — COSt COSH In the non-relativistic limit, the connection between

(A7) the components; and x, of the Dirac spinory and the

Schibdinger—Pauli functionp{"”, is obtained keeping

with the restrictions that sip + sinz cosd # 0 and  only the first term of the expansions (B2), and using the

0<0<m0<u,7,y <2r. first equation of (B4); that is
Among the BC included in this family ar¢,(L) = b — R
$1(0) = 0 and x2(L)/p1(L) = —x2(0)/$1(0) = . ' 1
These BC and all the others discussed in this paper are cd e (B6)
self-adjoint extensions for the ‘free’ Dirac Hamiltonian. X2 = —)\'a 1

The eigenvalues and eigenfunctions for the most gener%herek — /2me
BC of the Dirac Hamiltonian have been calculated in [6]. " \yjith these rélations we may calculate the non-
With respect to the problem of completeness, Weg|ativistic limit up to' the order of v™/c for
remark that the set of eigenfunctions of a self-adjointany quantum mechanical expression in one spatial
operator with a non-degenerate spectrum constitutes @mension.
basis of the Hilbert space. In our case we found
eigenfunctions of positive energy, from which those ofgeferences
negative energy can easily be obtained.
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