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Abstract. A relativistic ‘free’ particle in a one-dimensional
box is studied. The impossibility of the wavefunction
vanishing completely at the walls of the box is proven.
Various physically acceptable boundary conditions that allow
non-trivial solutions for this problem are proposed. The
non-relativistic limits of these results are obtained. The
problem of a particle in a spherical box, which presents the
same type of difficulties as the one-dimensional problem, is
also considered.

Resumen.Se considera el problema de una partı́cula ‘libre’
relativista en una caja unidimensional. Se comprueba la
imposibilidad de anular completamente la función de onda en
las paredes de la caja. Se proponen diversas condiciones de
frontera f́ısicamente aceptables que permiten encontrar
soluciones no triviales para este problema. Se discute el
lı́mite no relativista de estos resultados. También
consideramos el problema de una partı́cula en una caja
esf́erica, el cual presenta el mismo tipo de dificultades que el
problema unidimensional.

1. Introduction

In non-relativistic quantum mechanics a vanishing
normal component of the probability current is a
sufficient condition to obtain an impenetrable boundary
surface. This might be accomplished by imposing
Dirichlet, Neumann or mixed boundary conditions upon
the wavefunction. In the well known problem that
we all learn in elementary quantum mechanics, the
‘free’ particle in a one-dimensional box, the Dirichlet
boundary condition,ψ = 0, is the simplest one. With
this boundary condition the formal ‘free Schrödinger
Hamiltonian’ is a well defined self-adjoint operator.
However, besides the above boundary condition, there
exists a family of self-adjoint extensions each labelled
by four parameters [1, 2].

In relativistic quantum mechanics the wavefunction
is a spinor of four complex components, which are
coupled in a system of first-order differential equations.
Imposing the Dirichlet condition at the boundary is too
restrictive; it leads to incompatibility in the relativistic
scattering [3] as well as in the energy eigenvalues
problem, as will be shown below. However, non-
trivial solutions may be obtained by using appropriate
boundary conditions for the wavefunction [4, 5], in such
a way that self-adjointness of the formal Dirac operator
is maintained.
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According to the principles of quantum mechanics,
for each quantum mechanical system one defines
a Hilbert spaceH. Every measurable quantity is
called an ‘observable’ (e.g. energy, momentum, angular
momentum, etc) and has to be represented by a self-
adjoint operator acting onH. One might be interested
in studying the Lorentz-covariant Dirac equation with
covariant boundary conditions, but without losing any
generality, the formal Lorentz covariance of a dynamical
equation can be used to choose the privileged frame in
which the intrinsic nature of the physical system is the
simplest one. For a particle in a box, if we want to know
its energy eigenvalues, the convenient privileged frame
is that in which the space–time Lorentz transformations
are frozen and the box is at rest in a determined space
region. Once we have obtained the energy spectrum
in the privileged frame, the energy–momentum 4-vector
may be calculated in any inertial frame. So, the state of
the system is a normalized spinor, i.e. a four-component
vector9 ∈ H. Its time evolution is determined by the
family of operatorsU(t) = e−iHt/h̄. Conservation of
probability requires the operatorU(t) to be unitary and,
consequently, the HamiltonianH to be self-adjoint.
H is a very special observable because it generates

the time evolution of the states and its spectrum
represents the energy of the system. To define the
Hamiltonian properly, besides the formal expression
as a differential operator, its domain, in particular the
boundary conditions, must be specified. In fact, by
changing the boundary conditions of a given operator,
one modifies the operator itself without changing its
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formal expression, not to mention the risk of losing the
self-adjointness property (see appendix A). For example,
in the Aharonov–Bohm effect, by choosing different
boundary conditions, which preserve self-adjointness,
one obtains different cross sections [4]; aside from other
considerations, it is the experimental arrangement which
selects the appropriate observable.

In section 2 we give several physically acceptable
boundary conditions, some of which were already
proposed in scattering problems [4, 5]. We find non-
trivial solutions of the Dirac equation for a particle with
a fixed mass localized in a box. These results, as well
as the eigenvalues and eigenfunctions for a family of
self-adjoint extensions of the ‘free’ Dirac Hamiltonian
were obtained in [6].

It is worth pointing out that, as far as we know,
the problem of the several boundary conditions that
may be imposed for a ‘free’ particle inside a box in
relativistic quantum mechanics, has not been considered
in the widely used textbooks for exact solutions of
the Dirac equation [7–9]. However, the problem of
a Dirac fermion in a one-dimensional box interacting
with a scalar solitonic potential was considered earlier
with periodic [10], as well as with more general
boundary conditions [11] to elucidate the phenomenon
of fractional fermion number. For the case of the
Dirac ‘free’ massless operator, also in 1+1 dimensions,
eigenvalues and eigenfunctions were obtained for a
family of self-adjoint extensions in [12] and the case
with a non-zero vector potential was examined in [13].
Another particular solution to this problem has been
obtained by considering the Dirac equation with a
Lorentz scalar potential; here the rest mass can be
thought of as anx-dependent mass [9]. This allows us to
solve the infinite square well problem as a particle with
a changing mass that becomes infinite outside the box,
which avoids the Klein paradox [14]. A detailed study
of the possible boundary conditions, i.e. self-adjoint
extensions, for a relativistic particle inside a box, as
well as their non-relativistic limits, has been considered
by two of us (VA and SDeV) and will be submitted for
publication elsewhere.

The principal motivation in this pedagogical note is
to call attention to the fact that the boundary conditions
used in non-relativistic quantum mechanics should not
be extrapolated to the relativistic case, without proving
beforehand that the relativistic Hamiltonian will be self-
adjoint for them.

In section 2 we verify that the Dirac spinor cannot
vanish at the boundary of a non-permitted region—in
our case, the walls of a one-dimensional box. We find
non-trivial solutions upon imposing several boundary
conditions on the wavefunction. The non-relativistic
limit of these results is also discussed. In section 3 we
solve the problem of a particle in a spherical box using a
boundary condition that cancels the large component of
the spinor at the walls of the box. We propose various
boundary conditions that lead to non-trivial solutions.

2. One-dimensional box

Let us consider a ‘free’ electron in a one-dimensional
box in the interval� = [0, L]. The three-dimensional
Dirac equation for stationary states reads

H0ψ = (−ih̄cα · ∇ +mc2β)ψ = Eψ (1)

whereα, β are the well known Dirac matrices.
In this paper we restrict ourselves to positive

relativistic energies. In the Dirac representation, the
four-valued Dirac spinorψ can be expressed in terms

of the large and small two-valued semi-spinors,φ = (φ1
φ2

)
andχ = (χ1

χ2

)
, respectively; that is

ψ =
(
φ
χ

)
. (2)

Equation (1) is equivalent to the following coupled
equations:

−ih̄cσ · ∇χ +mc2φ = Eφ (3)

−ih̄cσ · ∇φ −mc2χ = Eχ (4)

whereσ are the Pauli matrices.
Eliminatingχ from (3) and (4), and takingφ = φ(x)

and χ = χ(x), with k = [
E2 − (mc2

)2]1/2
/h̄c, one

obtains(
d2

dx2
+ k2

)
φi = 0 i = 1, 2 (5)

which is independently satisfied by the large compo-
nents.

The small components may be obtained by means of
(4)

(
χ1

χ2

)
= −ih̄c

E +mc2

 0
d

dx
d

dx
0

(φ1

φ2

)
. (6)

One of the positive energy solutions is obtained by
takingφ2 = 0 and thereforeχ1 = 0. From equation (5),
the general solution forφ1 is

φ1 = A1φ
(1)
1 + B1φ

(2)
1 = A1eikx + B1e−ikx (7)

whereA1 andB1 are complex constants. The solutions
φ
(1)
1 andφ(2)1 are independent and verify the following

relation in the interval�:

φ
(1)
1

dφ(2)1

dx
− φ(2)1

dφ(1)1

dx
6= 0. (8)

From equation (6) one gets

χ2 = −ih̄c

E +mc2

(
A1

dφ(1)1

dx
+ B1

dφ(2)1

dx

)
= h̄ck

E +mc2

(
A1eikx − B1e−ikx

)
. (9)
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If φ(0) = (φ1(0)
0

) = 0 andχ(0) = ( 0
χ2(0)

) = 0 one obtains

the homogeneous system

A1φ
(1)
1

∣∣
x=0
+ B1φ

(2)
1

∣∣
x=0
= 0 (10)

A1
dφ(1)1

dx

∣∣∣∣
x=0

+ B1
dφ(2)1

dx

∣∣∣∣
x=0

= 0 (11)

the determinant of which cannot be zero due to (8). Thus
A1 = B1 = 0, that is, the only solution is the trivial one.
A similar result is obtained ifψ = 0 at x = L.

From equation (6), it can be seen that the vanishing
of the small componentχ2 at x = 0 is equivalent
to dφ1/dx|x=0 = 0. The non-existence of non-trivial
solutions for the given boundary condition is certainly a
consequence of the fact that (5) is an elliptic equation, so
that there are no non-trivial solutions if the functionφ1

and its derivativeχ2 have to vanish simultaneously at the
boundaries of the interval�. Certainly, the vanishing
of the entire relativistic wavefunction at the beginning
of an impenetrable barrier is not admissible. Though
in non-relativistic quantum mechanics a vanishing
wavefunction at the boundaries is one of the self-adjoint
extensions of the ‘free’ Hamiltonian, in relativistic
quantum mechanics it is not so. Indeed, the formal
Dirac ‘free’ Hamiltonian does not have this boundary
condition as one of its self-adjoint extensions. However,
taking only the large component as zero is a physically
acceptable boundary condition, because this condition is
a self-adjoint extension ofH0.

In the problem of an electron inside a one-
dimensional box, by imposing upon the large component

φ1(0) = φ1(L) = 0 (12)

one obtains inside the interval�

ψ = 2A1


i sin(kx)

0
0

h̄ck

E +mc2
cos(kx)

 (13)

with k = Nπ/L,N = 1, 2, . . . .
From appendix B, it can be seen that condition (12)

corresponds, in the non-relativistic limit, to the familiar
condition of a vanishing wavefunction at the walls of
the box; that is,φ(NR)

1 (0) = φ
(NR)
1 (L) = 0. Likewise,

and according to the Schrödinger–Pauli problem, the
small components of (13) are of the order ofv(NR)/c

and k(NR) = (
2mE(NR)

)1/2
/h̄, from which one obtains

the energyE(NR) = (h̄2/2m)(Nπ/L)2.
The Dirac probability density and current are given

by

ρ = φ̄1φ1 + χ̄2χ2 (14)

j = ecψ †αxψ = ec
(
φ̄1χ2 + χ̄2φ1

)
(15)

whereψ † is the Hermitian conjugate spinor andφ̄ is the
complex conjugate ofφ. With the boundary condition
(12), these quantities verify

ρ(0) = ρ(L) (16)

j (0) = j (L) = 0. (17)

In this case, the electron is actually enclosed inside the
box—there is no particle forx < 0 or x > L.

There are a variety of other ways of satisfying (17),
even though the four components of the Dirac spinor
cannot be equal to zero simultaneously. In fact, in
addition to (12), the impenetrability conditionj = 0 can
be achieved, for example, in any of the following three
cases:φ1(0) = χ2(L) = 0, φ1(L) = χ2(0) = 0 and
χ2(0) = χ2(L) = 0. The vanishing of the relativistic
current density at the walls of the box has been used
in the MIT bag model, see e.g. [15]. The relativistic
boundary condition used in this model is±(−i)βαxψ =
ψ , where the minus sign corresponds tox = 0 and
the plus sign tox = L. This boundary condition in
the Dirac representation is preciselyχ2(L)/φ1(L) =
−χ2(0)/φ2(0) = i. All these conditions, which can
be used if we consider the walls of the box to be
impenetrable barriers, are self-adjoint extensions for the
‘free’ Dirac Hamiltonian.

It may argued that the mixed boundary conditions
φ1(0) = χ2(L) = 0 and φ1(L) = χ2(0) = 0 are
not physical because their symmetry is not the same
at the walls of the box. In fact, the probability
density ρ is such that ρ(0) 6= ρ(L); therefore
these boundary conditions are not symmetric and
consequently the corresponding wavefunctions exhibit
a set of eigenvalues,k = (

N − 1
2

)
π/L with N =

1, 2, 3 . . . , which are different from those of the
wavefunction (13). In the non-relativistic limit these
conditions correspond to a vanishing ofφ(NR)

1 at x = 0
(x = L) and a vanishing of dφ(NR)

1 /dx in x = L (x = 0).
On the other hand, the boundary condition

χ2(0) = χ2(L) = 0 (18)

yields the eigenfunction in�

ψ = 2A1


cos(kx)

0
0

ih̄ck

E +mc2
sin(kx)

 (19)

which has the same eigenvalues as the wavefunction
(13) and satisfies the same relations (16) and (17).
In the non-relativistic limit this state corresponds to a
vanishing of dφ(NR)

1 /dx at x = 0 andx = L. The spinor
(19) describes a positive energy electron; however,
one may consider the charge conjugate of this spinor
which has a vanishing large component, which may be
regarded as describing a negative energy positron.

It is important to emphasize that by taking
into account only the physical symmetry (16),
the requirement of impenetrability (17) and the
corresponding energy spectrum, one cannot distinguish
between the boundary conditions (12) and (18); that
is, φ1(0) = φ1(L) = 0 and χ2(0) = χ2(L) = 0.
Hence, the wavefunctions (13) and (19) should be
regarded as equivalent, although not trivially equivalent
inasmuch as they cannot be taken one into the other
by means of a symmetry operation which commutes
with the Hamiltonian. Indeed, we consider that it is
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not possible to distinguish physically between these two
solutions, despite the fact that they exhibit different
probability densities. We assume that the probability
prediction can be verified experimentally only in regions
of size 1x sufficiently large so as to comply with
the uncertainty relation1x 1p ≥ h̄/2, with 1p
corresponding to the quantum state not perturbed by
the measurement of localization. According to this
criterion, the localization of the points, which in the
non-relativistic limit corresponds to a zero probability
of the stationary wave, is not possible—not to mention
that, in relativistic quantum mechanics, one cannot
localize the electron in a region of size less than the
Compton wavelength, because otherwise the electron
energy would be sufficient for pair production. Clearly,
L must be much larger than the Compton wavelength.

Finally, the boundary condition

χ2(L)

φ1(L)
= −χ2(0)

φ1(0)
= i (20)

yields the following eigenfunction in�:

ψ = 2A1eiδ/2


cos(kx − δ/2)

0
0

ih̄ck

E +mc2
sin(kx − δ/2)

 (21)

where δ = arctan(−h̄k/mc). In this case the
eigenvalues are obtained from the transcendental
equation tan(kL)+ (h̄k/mc) = 0.

It is worth pointing out that these results are the same
as those obtained in [14]. There the authors give a
mathematical justification for treating the problem of a
particle absolutely confined in a box, without requiring
the continuity of the wavefunction at the wall of the
box. In [14] where a scalar potential is used, the particle
mass becomes infinite in the external region of the box.
However, we just impose adequate boundary conditions
such that the Hamiltonian be self-adjoint.

Taking the non-relativistic limit of (20), as is done in
appendix B, we obtainλ

(
dφ(NR)

1 /dx
)
(L) = −(φ(NR)

1

)
(L)

andλ
(
dφ(NR)

1 /dx
)
(0) = (φ(NR)

1

)
(0). The non-relativistic

energy eigenvalues are obtained from tan(k(NR)L) +
(h̄k(NR)/mc) = 0. Obviously, by eliminating the term of
orderv(NR)/c and allowing the size of the box to grow,
we obtain that the spectrum, the wavefunction and the
boundary condition tend to their usual non-relativistic
values [14].

Another way of getting a well defined self-adjoint
problem is by extending the domain ofH0 to that of
periodic or anti-periodic functions in the interval�. In
fact, we may consider

ψ(0) = ±ψ(L). (22)

The corresponding plane-wave eigenfunctions have the
form

ψ = C1


1
0
0
h̄ck

E +mc2

 eikx (23)

and the energy eigenvalues are obtained fromk =
2nπ/L with n = 0,±1,±2, . . . for the periodic con-
dition and fromk = (2n − 1)π/L for the anti-periodic
one. On the other hand, taking the non-relativistic limit
of these boundary conditions, we obtainφ(NR)

1 (0) =
±φ(NR)

1 (L),
(
dφ(NR)

1 /dx
)
(0) = ±(dφ(NR)

1 /dx
)
(L), where

the plus (minus) sign corresponds to the non-relativistic
periodic (anti-periodic) condition.

For these boundary conditions the density current in
x = 0 and x = L is not zero, and satisfiesj (0) =
j (L). In this case the current at the box walls must be
interpreted physically. One may say that the walls of the
box are transparent to the particle, which is travelling
through the box in a condition of resonance.

3. Spherical box

Let V = 0,A = 0 in a spherical intervala ≤ r ≤ b
with (

φ
χ

)
= 1

r

(
F(r) Yj,l,jz (θ, ϕ)

iG(r) Yj,l′,jz (θ, ϕ)

)
where the two-valued semi-spinorsY are ‘spinorial
spherical harmonics’ of orderl, with l = j + 1

2µ, l
′ =

j − 1
2µ,µ = ±1, j = 1

2,
3
2, . . . and jz = −j,−j +

1, . . . , j [16].
The equation for the large components in this case is[

d2

dr2
− κ(κ + 1)

r2
+ k2

]
F(r) = 0 (24)

where k = [
E2 − (mc2

)2]1/2
/h̄c, κ = ±(j + 1

2

)
and

κ(κ + 1) = (j + 1
2

)(
j +µ+ 1

2

) = l(l + 1). In the non-
relativistic limit equation (24) is the radial Schrödinger
equation for free waves.

Equation (4) gives

G(r) = h̄c

E +mc2

(
d

dr
+ κ
r

)
F(r). (25)

Solving equations (24) and (25), one finds

ψ =
 [Ajl(kr)+ Bηl(kr)]Yj,l,jz

ih̄ckµ

E +mc2
[Ajl′(kr)+ Bηl′(kr)]Yj,l′,jz

 (26)

where jl and ηl are spherical Bessel functions and
l′ = l − µ.

Also in this case, it is not admissible to make the
spinor vanish atr = a or r = b. If one setsψ(a) =
0 explicitly, one obtains a homogeneous system, the
determinant of which is not zero due to

jv(z)ηv+1(z)− jv+1(z)ηv(z) = − 1

z2
. (27)

If we want to find a non-trivial solution for this
problem, by analogy with the previous one, we can
propose the boundary condition that cancels the large
component of the spinor at the walls of the spherical
box, φ(a) = φ(b) = 0. This boundary condition is
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physically acceptable and verifies the vanishing of the
radial component of the probability current. So, one
obtains

jl(ka)

ηl(ka)
= jl(kb)

ηl(kb)
(28)

and the wavefunction may then be written as

ψ=C
 [jl(ka)ηl(kr)− ηl(ka)jl(kr)]Yj,l,jz

ih̄ckµ

E +mc2
[jl(ka)ηl′(kr)− ηl(ka)jl′(kr)]Yj,l′,jz


a ≤ r ≤ b. (29)

In this case we can take the limit whena →
0: jl(ka)/ηl(ka) → (ka)2l+1 → 0, so the energy
eigenvalues are obtained fromjl(kb) = 0. In this way,
the solution for a particle localized in a sphere of radius
b is

ψ = D
 jl(kr)Yj,l,jz

ih̄ckµ

E +mc2
jl−µ(kr)Yj,l−µ,jz

 0≤ r ≤ b.

(30)

Since in the non-relativistic limit the small compo-
nents of (30) are of the order ofv(NR)/c, the well known
non-relativistic energy eigenvalues, which are obtained
from jl(k

(NR)b) = 0, are recovered.
We may also consider other boundary conditions that

satisfy the vanishing of the radial component of the
probability current at the walls of the spherical region:
χ(a) = χ(b) = 0, φ(a) = χ(b) = 0, φ(b) = χ(a) = 0.

Choosing one of these conditions is again a problem
of symmetry or physical convenience.

4. Conclusions

As distinguished from the non-relativistic problem, the
relativistic wavefunction at the boundaries of a non-
permitted region cannot vanish entirely. A necessary
and sufficient condition in order to find non-trivial
solutions is to impose on the wavefunction boundary
conditions that make the Hamiltonian self-adjoint. For
some of these conditions the probability current vanishes
at the walls of the box; they are just the conditions which
can be used in a model of an impenetrable barrier in
place of the continuity of the wavefunction. By taking
the non-relativistic limit of the boundary conditions that
we have considered, some already known results are
recovered. We believe that the subject of this paper
may be of interest to teachers and students of relativistic
quantum mechanics; as far as we know, it has not been
sufficiently discussed in textbooks and journals.
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Appendix A

For the relativistic ‘free’ particle inside a one-
dimensional box with fixed walls atx = 0 andx = L
the Dirac equation for stationary states may be written
as

(H0ψ)(x) =
(
−ih̄cαx

d

dx
+mc2β

)
ψ(x)

= Eψ(x) (A1)

whereψ is the four-component column Dirac spinor
depending onx ∈ � = [0, L] and

αx =
(

0 σx
σx 0

)
β =

(
1 0
0 −1

)
.

The spinorsψ(x) and (H0ψ)(x) belong to a dense
proper subset of the Hilbert spaceH = L2(�)⊕L2(�)⊕
L2(�) ⊕ L2(�); that is, in this subset there exists a
basis in which to expand everyψ ∈ H, with a scalar
product denoted by〈 , 〉. Generally the domains ofH0

and its adjointH ∗0 verify Dom(H0) ⊆ Dom(H ∗0 ), but
H0 must be self-adjoint, so we look for self-adjoint
extensions of the symmetric operatorH0 (as we shall
define below).

Without using the machinery of Von Neumann’s
theory of self-adjoint extensions of symmetric operators
[17] and without intending to be rigorous, let us briefly
consider the construction of a self-adjoint operator from
the formal Hamiltonian

H0 = −ih̄cαx
d

dx
+mc2β (A2)

whose initial dense domain may be written as

D = {ψ ∈ H, a.c. in�, (H0ψ) ∈ H,
with ψ(0) = ψ(L) = 0} (A3)

where a.c. means absolutely continuous functions. With
this domainH0 is a symmetric operator; that is, for all
ζ, η ∈ D,

〈H0ζ, η〉 − 〈ζ,H0η〉 = ih̄c[(ζ †axη)(L)− (ζ †axη)(0)]
= 0. (A4)

Since the quantum dynamics requiresH0 to be a self-
adjoint operator, it must be fulfilled that Dom(H0) =
Dom(H ∗0 ), where H ∗0 , defined by the same formal
operator (A2), is the adjoint of the differential operator
H0. Its domain is defined by Dom(H ∗0 ) = {v ∈
H, a.c. in�, (H ∗0 v) ∈ H} with

〈H0ζ, v〉 − 〈ζ,H ∗0 v〉 = ih̄c[(ζ †axv)(L)− (ζ †axv)(0)]
= 0 (A5)

for all ζ ∈ Dom(H0) and v ∈ Dom(H ∗0 ). Clearly,
H ∗0 is defined on a manifold of spinors taking arbitrary
values at the end points of the interval�. So, the
boundary conditions (BC) defined by equation (A3) are
incompatible with the required self-adjointness ofH0.

Now the problem consists in choosing a sufficiently
general set of BC for which Dom(H0) = Dom(H ∗0 ).
If Dom(H0) is fixed, H ∗0 will be the adjoint ofH0 if
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its maximal domain is consistent with the vanishing of
(ζ †αxv)(L)− (ζ †axv)(0), for all ζ ∈ Dom(H0).

Taking into account our study on the general BC for
this problem, we write here, as an example, the form of
one of the families of BC,(

φ1(L)
φ1(0)

)
= A

( −χ2(L)
χ2(0)

)
A = −A† and φ2 = χ1 = 0

(A6)

where

A = i(sinµ+ sinτ cosθ)−1

×
(

cosµ+ cosτ cosθ eiγ sinθ
e−iγ sinθ cosµ− cosτ cosθ

)
(A7)

with the restrictions that sinµ + sinτ cosθ 6= 0 and
0≤ θ < π,0≤ µ, τ, γ < 2π .

Among the BC included in this family areφ1(L) =
φ1(0) = 0 and χ2(L)/φ1(L) = −χ2(0)/φ1(0) = i.
These BC and all the others discussed in this paper are
self-adjoint extensions for the ‘free’ Dirac Hamiltonian.
The eigenvalues and eigenfunctions for the most general
BC of the Dirac Hamiltonian have been calculated in [6].

With respect to the problem of completeness, we
remark that the set of eigenfunctions of a self-adjoint
operator with a non-degenerate spectrum constitutes a
basis of the Hilbert space. In our case we found
eigenfunctions of positive energy, from which those of
negative energy can easily be obtained.

Appendix B

By consideringφ = (φ1(x)

0

)
andχ = ( 0

χ2(x)

)
, equations (3)

and (4) lead to the system

−ih̄c
d

dx
φ1 =

(
E +mc2

)
χ2

−ih̄c
d

dx
χ2 =

(
E −mc2

)
φ1.

(B1)

Assuming thatφ1(x, c) = φ1(x,−c), χ2(x, c) =
−χ2(x,−c) andE(c) = E(−c), the functionsφ1(x,−c)
and χ2(x,−c) satisfy equations (B1) withc → −c;
consequently, we may write the following expansions
in c for φ1(x, c) andχ2(x, c) [9]:

φ1 = φ(NR)
1 + 1

c2
φ1(1) + 1

c4
φ1(2) + · · ·

χ2 = 1

c
χ
(NR)
2 + 1

c3
χ2(1) + 1

c5
χ2(2) + · · ·

(B2)

and for the energy

E = mc2 + E(NR) + 1

c2
E(1) + 1

c4
E(2) + · · · . (B3)

Substituting relations (B2) and (B3) in (B1) and
comparing the terms of lower order, we obtain the
following system:

i
d

dx
φ
(NR)
1 + 2m

h̄
χ
(NR)
2 = 0

i
d

dx
χ
(NR)
2 + E

(NR)

h̄
φ
(NR)
1 = 0.

(B4)

Eliminatingχ(NR)
2 , we obtain the eigenvalue Schrödinger

equation[
d2

dx2
+ (k(NR)

)2
]
φ
(NR)
1 = 0 (B5)

where
(
k(NR)

)2 = 2mE(NR)/h̄2.
In the non-relativistic limit, the connection between

the componentsφ1 andχ2 of the Dirac spinorψ and the
Schr̈odinger–Pauli functionφ(NR)

1 , is obtained keeping
only the first term of the expansions (B2), and using the
first equation of (B4); that is

φ1→ φ
(NR)
1

χ2→−λi
d

dx
φ
(NR)
1

(B6)

whereλ = h̄/2mc.
With these relations, we may calculate the non-

relativistic limit up to the order of v(NR)/c for
any quantum mechanical expression in one spatial
dimension.
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