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Delta-Type Dirac Point Interactions and Their
Nonrelativistic Limits
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The problem of a relativistic free particle on a line with a hole, which is
characterized in terms of boundary conditions for a one-dimensional Dirac
Hamiltonian perturbed at one point, is reviewed. We show that the general four-
parameter family of point interactions earlier obtained by Falkensteiner and
Grosse can be written in two forms: In one of them three subfamilies of boundary
conditions are obtained. In the nonrelativistic limit one of these subfamilies
coincides with those given by Carreau et al. and Carreau. In the other form, three
subfamilies of boundary conditions are also obtained, two of which coincide with
those studied by Benvegnù and Dabrowski. In the nonrelativistic limit all these
subfamilies coincide with those studied by Albeverio et al. The most general
subfamilies for which the Dirac Hamiltonian is invariant under space inversion
P as well as under time reversal T and PT are obtained. Only these subfamilies
represent delta-type Dirac point interactions. Typical relativistic and
nonrelativistic boundary conditions are therein included.

1. INTRODUCTION

The point interactions in one space dimension may be used to approxi-
mate in a simple way more structured and complex physical situations.
The simplest nonrelativistic point interaction in one-dimensional quantum
mechanics was introduced by Fermi [1] and corresponds to a Dirac delta. Its
mathematical interpretation was given by Berezin and Faddeev [2]. In one-
dimensional relativistic quantum mechanics, the free Dirac operator perturbed
by point interactions was first studied by Woods and Callaway [3] and
corresponds to the relativistic generalization of the classical Kronig–Penney
model [4].
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Subsequently, interest in the relativistic Kronig–Penney model increased
[5]. At the same time, it was noted that the method of obtaining the band
equation in the Kronig–Penney model in the delta function limit, and the
method of directly solving the Dirac equation for a delta function potential,
lead to different results. As noted by Subramanian and Bhagwat, this peculiar-
ity can be seen even when the potential consists of a single delta function
term. However, it was noted that these results became identical when the
strength of the delta function potential was weak. Fairbairn et al. [6] argued
that one should require that the strength of the potential be very small. In
that case the relativistic corrections may be small, but since they are precisely
the terms of interest, they should be treated properly. Steps leading to the
erroneous use of the usual treatment of the delta function potential in the
one-dimensional Dirac equation have been explained [7].

It is known that there is a general four-parameter family of self-adjoint
Dirac free massless operators describing point interactions [8]. For a free Dirac
operator with mass, the same four-parameter family of boundary conditions is
obtained for the Dirac Hamiltonian perturbed at one point as well as for the
Dirac Hamiltonian for a particle in a one-dimensional box [9]. The physical
literature deals with particular one-parameter subfamilies [10]. In order to
understand and solve the ambiguities and controversy [11] with the relativistic
point interactions, the resolvent, spectrum, and scattering matrix were calcu-
lated [12]. However in ref. 12 a four-parameter family of self-adjoint exten-
sions different from that given in ref. 8 was obtained. Also, in ref. 12 their
nonrelativistic limits are shown to coincide with the four-parameter family
of self-adjoint Schrödinger operators studied in ref. 13. The full nonrelativistic
families were studied in ref. 14. Recently, these nonrelativistic boundary
conditions were studied with a detailed description of fundamental symmetry
transformations: parity, time reversal, and scaling [15].

In recent years, various aspects of relativistic point interactions have
been considered. The question of approximation by smooth potentials was
studied [16], as well as the effect of the so-called “Coulomb potential” on
the Dirac Hamiltonian [17] (relativistic point interactions due to a potential
singular at one point). The delta potentials also have been applied to relativistic
particle physics [18]. There also have been attempts to generalize the relativis-
tic point interaction model to higher dimensions (such a generalization is
possible in the Schrödinger case [19]). They lead the theorem of Svendsen
[20], which claims that a nontrivial relativistic point interaction can only
be defined for a dimension equal to one. Recently, using a path-integral
representation of the one-dimensional Dirac particle with point interaction,
the corresponding Green function by means of a perturbation expansion has
been obtained [21].
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As is well known, discrete symmetries play an important role in quantum
mechanics and even more in relativistic quantum mechanics. In fact, they
are capable of restricting families of boundary conditions (self-adjoint exten-
sions) and selecting some of them. The relativistic time-reversal symmetry
was briefly mentioned in a recent paper [22]. It is claimed therein that when
time-reversal invariance is imposed on the four-parameter family of point
interactions for the Dirac equation, the number of parameters is reduced to
three. However, the various discrete symmetries of the one-dimensional Dirac
Hamiltonian perturbed at one point, as far as we know, have not been
considered.

In this paper, we use the full four-parameter family of self-adjoint exten-
sions (boundary conditions) of the Dirac Hamiltonian operator with point
interactions obtained in ref. 8, but in the Dirac representation. This family
can be written as three types of subfamilies of self-adjoint extensions (see
Appendix A). In the nonrelativistic limit one of these subfamilies coincides
with those given by Carreau et al. [23] and Carreau [24] (see Appendix C).
Likewise, the full four-parameter family of boundary conditions of [8] can
be again written as three different types of subfamilies (see Appendix B),
two of which coincide with those studied by Benvegnù and Dabrowski [12].
In the nonrelativistic limit all these subfamilies coincide with those studied
by Kurasov [14] and Albeverio et al. [15]. In order to relate and unify in
a simple way the results of the above-mentioned authors, some overlap
was necessary.

In Section 2, we present the family of self-adjoint extensions of the Dirac
Hamiltonian operator with point interactions. In Section 3, the subfamilies of
boundary conditions for which the Dirac Hamiltonian is invariant under time
reversal T, PT, and space inversion P are obtained. Only these boundary
conditions may represent delta-type relativistic point interactions. Typical
relativistic delta-like boundary conditions as well as their nonrelativistic limits
are obtained. In particular, the usual Dirac delta relativistic point interaction
is included; this is reviewed in Section 4. Finally, the conclusions are presented
in Section 5.

2. SELF-ADJOINT EXTENSIONS OF THE HAMILTONIAN
OPERATOR

For a relativistic free particle [i.e., V(x) 5 0] moving on a line with the
origin excluded, the Dirac equation may be written as

i"


t
C(x, t) 5 12i"ca



x
1 mc2b2C(x, t) (1)

where C denotes a two-component wavefunction (“spinor”) depending on
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x P V 5 5 2 {0} and time. The 2 3 2 matrices a and b satisfy ab 1
ba 5 0 and a2 5 b2 5 1. In the Dirac representation a 5 sx and b 5 sz.

The Dirac eigenvalue equation is given by

Hc(x) 5 12i"ca
d
dx

1 mc2b2c(x) 5 Ec(x) (2)

where c is related to C by C(x, t) 5 c(x)e2iEt/". In the Dirac representation
we write c 5 (f

x), where f and x are, respectively, the spatial parts of the
so-called large and small components of the Dirac spinor. The “spinors” c(x)
and (Hc)(x) belong to a dense proper subset of the Hilbert space H 5 L2(V)
% L2(V).

It is found that there is a four-parameter family of self-adjoint Hamilto-
nian (extensions) that can be characterized by a four-parameter family of
boundary conditions imposed on the components of the Dirac “spinor” [8].
In the Dirac representation, the formal Hamiltonian H [ Hu,m,t,g is

Hu,m,t,g 5 2i"csx
d
dx

1 mc2sz (3)

whose domain is given by

Dom(H ) 5 Hc 5 1f
x2Zc P H, a.c. in V , (Hc) P H, c fulfils

1f(01) 1 x(01)
f(02) 2 x(02)2 5 U1f(01) 2 x(01)

f(02) 1 x(02)2, U 21 5 U +J (4)

where hereafter a.c. means absolutely continuous function and the superscript
plus sign denotes the adjoint of a vector or a matrix. The unitary matrix U
may be written as

U 5 1a b
c d2 (5)

where a, b, c, d imply the conditions

aa 1 bb 5 cc 1 dd 5 bb 1 dd 5 aa 1 cc 5 1 (6)

ac 1 bd 5 ab 1 cd 5 0

which are satisfied with a 5 eim eit cos u, b 5 eim eig sin u, c 5 eim e2ig sin
u, and d 5 2eim e2it cos u, where 0 # u , p and 0 # m, t, g , 2p. It is
worth noting that these parameters take only finite values, though the same
boundary condition may be given by a subfamily of parameters.
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3. P , T, AND PT SYMMETRIES

Our aim is to characterize the most general delta-type relativistic point
interactions. That is, among all the boundary conditions included in Dom(H ),
we want to single out those for which the Dirac Hamiltonian perturbed at
one point is invariant under space reflection P , which is a natural requirement
for a d-type interaction, and then we shall consider time-reversal T and
PT invariance.

Let us consider these transformations in the Dirac representation:

PC(x, t) 5 szC(2x, t)

TC(x, t) 5 szC(x, 2t) (7)

PTC(x, t) 5 C(2x, 2t)

where C is the complex conjugate of C.
Let us require that the Hamiltonian operator with domain given in (4)

be invariant under the parity transformation P; then

P21 HPc 5 Hc (8)

Clearly, the parity-transformed “spinor” must satisfy Pc P Dom(H ), which
implies that

Usx 5 sxU (9)

Thus, the parameters a, b, c, d in U satisfy

a 5 d, b 5 c (10)

These relations yield four subfamilies of two-parameter unitary matrices:

U 5 eim16i cos u sin u
sin u 6i cos u2 (11)

where the upper sign corresponds to g 5 0, t 5 p/2 and the lower one to
g 5 0, t 5 3p/2, and

U 5 eim16i cos u 2sin u
2sin u 6i cos u2 (12)

where the upper sign corresponds to g 5 p, t 5 p/2 and the lower one to
g 5 p, t 5 3p/2.

If the Hamiltonian operator is invariant under time reversal T we have

T 21 HTc 5 Hc (13)

For that, the “spinor” c must additionally satisfy Tc P Dom(H ). So, the
matrix U satisfies
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U + 5 U (14)

which implies that

b 5 c (15)

Therefore, we are left with two subfamilies of unitary matrices with three
real, independent parameters:

U 5 eim1eit cos u 6sin u
6sin u 2e2it cos u2 (16)

where the upper sign corresponds to g 5 0 and the lower one to g 5 p. In
connection with this, see Section 5 of ref. 22 and also Lemma 2 in Section
5 of ref. 15, both for the nonrelativistic case (see Appendix C).

Likewise, if the Hamiltonian is invariant under the composed symmetry
transformation PT,

(PT )21 HPTc 5 Hc (17)

then the transformed “spinor” must satisfy PTc P Dom(H ). So, the matrix
U is such that

sxU + 5 Usx (18)

This requires that

a 5 d (19)

In this case two subfamilies of unitary matrices with three parameters are
also obtained, one with t 5 p/2 for the upper sign and other with t 5
3p/2 for the lower sign:

U 5 eim16i cos u eig sin u
e2ig sin u 6i cos u2 (20)

Clearly, the set of boundary conditions invariant under the parity transfor-
mation P are also invariant under time reversal T and PT. Each one of these
four subfamilies of boundary conditions can be written as two types of
boundary conditions (see Appendix A):

12x(01)
x(02) 2 5 A1 1f(01)

f(02)2 and 1f(01)
f(02)2 5 A212x(01)

x(02) 2
Since t 5 p/2 or t 5 3p/2, there are no boundary conditions associated
with Family 3 in appendix A. So we can write the following matrices:
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A1 5
i

sin m 2 cos u 1 cos m 7 sin u
7 sin u cos m 2,

A2 5
i

sin u 1 cos u 1 cos m 6 sin u
6 sin u cos m 2

where the upper signs correspond to g 5 0, t 5 p/2 and the lower ones to
g 5 p, t 5 p/2, and

A1 5
i

sin m 1 cos u 1 cos m 7 sin u
7 sin u cos m 2,

A2 5
i

sin u 2 cos u 1 cos m 6 sin u
6 sin u cos m 2

where the upper signs correspond to g 5 0, t 5 3p/2 and the lower ones
to g 5 p, t 5 3p/2.

Likewise, in order to recover other self-adjoint extensions already known
in the literature, we write each of the subfamilies (11), (12) as two types of
subfamilies of boundary conditions (see Appendix B):

1f(01)
x(01)2 5 B11f(02)

x(02)2, 1f(02)
x(02)2 5 B21f(01)

x(01)2 for u Þ 0

f(01) 5 2i ctn1m 1 t
2 2x(01), f(02) 5 2i tan1m 2 t

2 2x(02)

for u 5 0

Since the boundary conditions of the first type connect the boundary values
of the wavefunction on the left and right half-lines [14], we consider only
these types of boundary conditions. So, we can write the following matrices:

B1 5
61

sin u 1 cos m i(sin m 2 cos u)
i(sin m 1 cos u) cos m 2,

(21)

B2 5
61

sin u 1 cos m 2i(sin m 2 cos u)
2i(sin m 1 cos u) cos m 2

where the upper signs correspond to g 5 0, t 5 p/2 and the lower ones to
g 5 p, t 5 p/2, and
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B1 5
61

sin u 1 cos m i(sin m 1 cos u)
i(sin m 2 cos u) cos m 2,

(22)

B2 5
61

sin u 1 cos m 2i(sin m 1 cos u)
2i(sin m 2 cos u) cos m 2

where the upper signs correspond to g 5 0, t 5 3p/2 and the lower ones
to g 5 p, t 5 3p/2.

Among the infinite boundary conditions included in Dom(H ), with H
invariant under space inversion P, time reversal T, and PT, we first obtain
two important types of boundary conditions:

1. Those for which the large component f is continuous, but the small
component x is discontinuous at x 5 0. In the nonrelativistic limit (see
Appendix C) these boundary conditions represent a usual delta potential
placed at the origin (the wavefunction fNR is continuous at x 5 0, but its
first derivative f8NR has a jump proportional to the wavefunction at x 5 0).
In other words, all these point interactions describe a nonrelativistic Schröd-
inger operator perturbed by a nonrelativistic d potential: V(x) 5 Ad(x). The
strength of this potential is a function of only one parameter, m or u. So we
can write the following boundary conditions:

1f(01)
x(01)2 5 1 1 0

2i ctn u 121f(02)
x(02)2

with g 5 0, t 5 p/2, m 5 p/2 2 u or g 5 p, t 5 3p/2, m 5 2p/2 2 u, and

1f(01)
x(01)2 5 1 1 0

22i ctn u 121f(02)
x(02)2

with g 5 0, t 5 3p/2, m 5 2p/2 1 u or g 5 p, t 5 p/2, m 5 p/2 1 u.
2. An important class of boundary conditions are those for which x is

continuous and f is discontinuous at x 5 0. In the nonrelativistic limit (see
Appendix C) these boundary conditions have f8NR continuous and fNR discon-
tinuous at the origin [19, 25] and are commonly ill-called [26] d8 interactions.
It is worth noting that these boundary conditions do not describe a nonrelativis-
tic Schrödinger operator perturbed by the derivative of a nonrelativistic d
potential [27]. Moreover, the nonrelativistic d8 point interactions so defined
are invariant under x → 2x, in contrast to dd/dx, which is an odd function
of x [26]. So we can write the following boundary conditions:

1f(01)
x(01)2 5 11 2i ctn u

0 1 21f(02)
x(02)2

with g 5 0, t 5 3p/2, m 5 p/2 2 u or g 5 p, t 5 p/2, m 5 2p/2 2 u, and
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1f(01)
x(01)2 5 11 22i ctn u

0 1 21f(02)
x(02)2

with g 5 0, t 5 p/2, m 5 2p/2 1 u or g 5 p, t 5 3p/2, m 5 p/2 1 u.

4. GENERALIZED AND USUAL DIRAC DELTA RELATIVISTIC
POINT INTERACTIONS

An important third type of boundary conditions included in Dom(H ) is
obtained making u 5 p/2 in the matrices B1 and B2 in (21), (22):

1f(01)
x(01)2 5 6 1 cos m i sin m

i sin m cos m 21f(02)
x(02)2 (23)

where g 5 0, p 5 p/2 or 3p/2 for the upper sign, and g 5 p, t 5 p/2 or
3p/2 for the lower sign. With this choice (u 5 p/2) the boundary conditions
obtained from (21), (22) are invariant under the replacements f → x and
x → f. However, the free Dirac Hamiltonian with point interaction is not
invariant under this transformation unless m 5 0.

All these boundary conditions may be called generalized Dirac delta
relativistic point interactions. A particular Dirac delta-type relativistic point
interaction is obtained by making in (23) the following replacements: for the
upper sign in (23), m [ 22 tan21 (g/2"c), where 2` , g , 0 with 0 ,
m , p and 0 , g , 1` with p , m , 2p; for the lower sign in (23), m
1 p [ 22 tan21 (g/2"c), where 0 , g , 1` with 0 , m , p and m 2
p [ 22 tan21 (g/2"c), where 2` , g , 0 with p , m , 2p.

All these boundary conditions correspond to the so-called Dirac d relativ-
istic interaction with potential energy V(x) 5 gd(x), and are obtained by
directly integrating the Dirac equation [5, 6, 28] making use of
*01

02 C(x)d(x) dx 5 1–2 [C(01) 1 C(02)] [7]. This relation has been used
because, in general, the whole relativistic wavefunction is not continuous at
x 5 0, in contrast with the nonrelativistic case. However, this last relation
cannot be imposed in general [7, 29].

In the limit (g/2"c)2 ¿ 1, all these boundary conditions [upper or lower
sign in (23) with the corresponding m replacements] may be rewritten as

1f(01)
x(01)2 5 1 cos(g/"c) 2i sin (g/"c)

2i sin(g/"c) cos(g/"c) 21f(02)
x(02)2 (24)

These g-dependent boundary conditions correspond to a Dirac delta
relativistic interaction with potential energy V(x) 5 gd(x), and may be obtained
by solving the Dirac equation for a general sharply peaked potential and then
taking the d-function limit of the potential [7, 30].
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The matricial boundary condition (24) seems to be the correct jump
condition in the one-dimensional Dirac equation with a local d-potential.
Moreover, it is worth noting that the sign of the strength g, positive for
repulsive potentials and negative for attractive ones, is not important as far
as the existence of bound states is concerned, in accordance with general
results for bound states of the one-dimensional Dirac equation [31]. In any
case, all these delta boundary conditions are self-adjoint extensions of the
Hamiltonian operator perturbed at one point [8, 12].

For very small potential strength, the relativistic boundary conditions
(23), with the corresponding m replacements, and (24) have the same nonrela-
tivistic limit; in fact, one obtains (see Appendix C)

fNR(01) > fNR(02) 2
g

2mc2 f8NR(02) > fNR(02) [ fNR(0)

f8NR(01) 2 f8NR(02) > 2mg
"2 fNR(0)

where the primes mean differentiation with respect to x. So the Dirac delta
relativistic point interactions (23), as well as (24), approach the typical nonrel-
ativistic Dirac delta interaction. For instance, for the “relativistic one-dimen-
sional hydrogen atom” [32] g 5 2Ze2, and for the upper sign in (23) we
obtain m [ 2 tan21 (Zafsc/2), where afsc > 1/137 is the fine structure constant.
For Z , 1 we can write m , afsc. In this last case, the results given by the
two relativistic deltas (23) and (24) become identical.

5. CONCLUSION

In order to relate the various types of boundary conditions included in
the domain of the Dirac Hamiltonian appearing in the literature, we have
shown that the general four-parameter family of point interactions earlier
obtained by Falkensteiner and Grosse may be written in two forms: For one
of them three subfamilies of boundary conditions were obtained (see Appen-
dix A). In the nonrelativistic limit one of these subfamilies coincides with
those given by Carreau et al. and Carreau (see Appendix C). In the other
form, three subfamilies of boundary conditions were also obtained, two of
which coincide with those studied by Benvegnù and Dabrowski (see Appendix
B). In the nonrelativistic limit all of these subfamilies coincide with those
studied by Albeverio et al. (see Appendix C).

Among the infinite boundary conditions for which the Dirac Hamiltonian
operator with point interactions is self-adjoint, we have singled out only those
boundary conditions that represent delta-type Dirac point interactions. We
first obtain four subfamilies for which the Dirac Hamiltonian perturbed at
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one point is invariant under space inversion P. This set of boundary conditions
are also invariant under time reversal T and PT. The typical relativistic and
nonrelativistic delta-type boundary conditions are, in fact, P-, T-, and PT-
invariant. In particular, three important groups of boundary conditions were
obtained: One for which the large component f is continuous; but the small
component x is discontinuous at x 5 0; another for which x is continuous,
but f is discontinuous at x 5 0; and finally the generalized Dirac delta
relativistic point interactions. Obviously, the usual Dirac delta relativistic
point interaction is included here.

We believe that our approach relates and unifies in a simple way all
previous main results about the several boundary conditions that may be
imposed for a free Dirac particle on a line with a hole. Moreover, the basic
symmetries that characterize the delta-type Dirac point interactions have been
systematically studied.
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APPENDIX A

The family of boundary conditions included in (4) is

1f(01) 1 x(01)
f(02) 2 x(02)2 5 1a b

c d21f(01) 2 x(01)
f(02) 1 x(02)2 (A1)

and in order to make contact with the self-adjoint extensions of other authors
we write

11 1 a b
c 1 1 d212x(01)

x(02) 2 5 11 2 a 2b
2c 1 2 d21f(01)

f(02)2 (A2)

Then, three types of families of boundary conditions are obtained:

Family 1.

12x(01)
x(02) 2 5 A11f(01)

f(02)2, A1 5 2(A1)+ (A3)

where the matrix A1 is written as
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A1 5 i(sin m 2 sin t cos u)21 (A4)

1cos u 2 cos t cos u 2eig sin u
2e2ig sin u cos u 1 cos t cos u2

with the restriction sin m 2 sin t cos u Þ 0.

Family 2:

1f(01)
f(02)2 5 A212x(01)

x(02) 2, A2 5 2(A2)+ (A5)

where

A2 5 i(sin m 1 sin t cos u)21 (A6)

1cos m 1 cos t cos u eig sin u
e2ig sin u cos m 2 cos t cos u2

with the restriction sin m 1 sin t cos u Þ 0.

Family 3. Finally, let us consider the cases where the above two restric-
tions are changed to sin m 2 sin t cos u 5 0 and sin m 1 sin t cos u 5 0.
It can be shown that all boundary conditions in this family are obtained from
(A2), and are included in some of the following cases:

For u Þ p/2, 0 # g , 2p,

A312x(01)
x(02) 2 5 A41f(01)

f(02)2, m 5 0, t 5 0 (A7)

A512x(01)
x(02) 2 5 A61f(01)

f(02)2, m 5 0, t 5 p (A8)

A412x(01)
x(02) 2 5 A31f(01)

f(02)2, m 5 p, t 5 0 (A9)

A612x(01)
x(02) 2 5 A51f(01)

f(02)2, m 5 p, t 5 p (A10)

where the matrices A3, A4, A5, and A6 are

A3 5 11 1 cos u eig sin u
e2ig sin u 1 2 cos u2, A4 5 1 1 2 cos u 2eig sin u

2e2ig sin u 1 1 cos u2
(A11)

A5 5 11 2 cos u eig sin u
e2ig sin u 1 1 cos u2, A6 5 1 1 1 cos u 2eig sin u

2e2ig sin u 1 2 cos u2
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If u 5 p/2, these boundary conditions are also valid because in this case,
from (A2), the matrices A3, A4, A5, and A6 do not depend on t.

APPENDIX B

In order to obtain boundary conditions that relate c(01) with c(02),
we write (A1) as

11 2 a 1 1 a
c 2c 21f(01)

x(01)25 1 b b
1 2 d 21 2 d21f(02)

x(02)2 (B1)

Then, three types of families of boundary conditions may be obtained:

Family 1:

1f(01)
x(01)2 5 B11f(02)

x(02)2 (B2)

where the matrix B1 is equal to

B1 5 eig(sin u)211 cos m 1 cos t cos u i(sin m 2 sin t cos u)
i(sin m 1 sin t cos u) cos m 2 cos t cos u 2

[ eig1(B1)11 (B1)12

(B1)21 (B1)222 (B3)

with the restriction sin u Þ 0. Note that

det1(B1)11 (B1)12

(B1)21 (B1)222 5 1

so this boundary condition coincides with that given by Benvegnù and
Dabrowski [12].

Family 2:

1f(02)
x(02)2 5 B21f(01)

x(01)2 (B4)

where the matrix B2 is equal to

B2 5 e2ig(sin u)211 cos m 2 cos t cos u 2i(sin m 2 sin t cos u)
2i(sin m 1 sin t cos u) cos m 1 cos t cos u 2

[ e2ig1(B2)11 (B2)12

(B2)21 (B2)222 (B5)
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with the same restriction sin u Þ 0. This matricial boundary condition is the
“inverse” of the condition (B2). In fact, (B2)11 5 (B1)22, (B2)12 5 2(B1)12,
(B2)21 5 2(B1)21, and (B2)22 5 2(B1)11.

Family 3: Finally, we consider the case where sin u 5 0. This essentially
corresponds to the vanishing of the determinants of the square matrices in
(B1). So all boundary conditions in this family are obtained by making u 5
0 in (B1),

f(01) 5 2i ctn1m 1 t
2 2x(01), f(02) 5 2 i tan1m 2 t

2 2x(02)

(B6)

Since 0 # m, t ,2p, then ctn(m 1 t/2) and tan(m 2 t/2) belong to R ø {`}.
It is worth noting that, in addition to (A2), which relates {x(01), x(02)}

with {f(01), f(02)}, and (B1), which relates {f01), x(01)} with {f02),
x(02)}, we can also relate {f01), x(02)} with {f02), x(0;1)}. Essentially,
only these three types of boundary conditions may be obtained, up to 1, 2
signs in f or x. This last case is not considered in the literature.

APPENDIX C

The Dirac equation for stationary states is given by (2). Assuming that
the components of the Dirac “spinor” in the Dirac representation satisfy f(x,
c) 5 f(x, 2c), x(x, c) 5 2x(x, 2c), and E(c) 5 E(2c), the functions f(x,
2c) and x(x, 2c) satisfy equation (2) with c → 2c; consequently, we may
write the following expansions in c for f(x, c) and x(x, c):

f 5 fNR 1
1
c2 f1 1

1
c4

f2 1 . . . (C1)

x 5
1
c

xNR 1
1
c3 x1 1

1
c4 x2 1 . . .

and for the energy

E 5 mc2 1 ENR 1
1
c2 E1 1

1
c4 E2 1 . . . (C2)

Substituting these expansions in (2) and comparing the terms of the lower
order, we obtain

if8NR 1
2m
"

xNR 5 0, ix8NR 1
ENR

"
fNR 5 0 (C3)

where the primes mean differentiation with respect to x. The connection
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between the components f and x of the Dirac “spinor” and the Schrödinger
eigenfunction fNR is obtained by keeping only the first term of the expansions,
that is,

f → fNR, x → 2lif8NR (C4)

where l 5 "/(2mc).
In the nonrelativistic limit the boundary conditions from the first family

given in appendix A coincide with those given by Carreau et al. [23] and
Carreau [24]; in fact, we obtain

12lf8NR (01)
lf8NR (02) 2 5 iA11fNR (01)

fNR(02) 2 (C5)

Since the matrix A1 is anti-Hermitian, the matrix iA1 is Hermitian. Likewise,
the nonrelativistic limits of the families given in the Appendix B are as
follows.

Family 1:

1 fNR(01)
lf8NR(01)2 5 eig1 (B1)11 2i(B1)12

i(B1)21 (B1)22 21 fNR(02)
lf8NR(02)2 (C6)

Family 2:

1 fNR(02)
lf8NR(02)2 5 e2ig1 (B1)22 i(B1)12

2i(B1)21 (B1)1121
fNR(01)

lf8NR(01)2 (C7)

The 2 3 2 matrices in (C6) and (C7) are real, and their determinants are
equal to one with sin u Þ 0; then these two families can be considered as
the same family of boundary conditions.

Family 3:

fNR(01) 5 2ctn1m 1 t
2 2lf8NR(01), (C8)

fNR(02) 5 2tan1m 2 t
2 2lf8NR(02)

Note that in these cases sin u 5 0. All these families of boundary conditions
(Family 1 1 2 and Family 3) are similar to those studied by Kurasov [14]
and Albeverio et al. [15]. In ref. 14 the boundary conditions of the first
and second family are called “connected.” Albeverio et al. [15] call them
“nonseparated.” Boundary conditions included in the third family are called
by all these authors “separated.” In any case, they represent the truly whole
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family of Schrödinger point interactions, also obtained as the nonrelativistic
limit of the general boundary condition included in (4).
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