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Abstract. The most general relativistic boundary conditions (BCs) for a ‘free’ Dirac particle

in a one-dimensional box are discussed. It is verified that in the Weyl representation there is
only one family of BCs, labelled with four parameters. This family splits into three sub-families

in the Dirac representation. The energy eigenvalues as well as the corresponding non-relativistic
limits of all these results are obtained. The BCs which are symmetric under space inversion
and those which ar€ PT invariant for a particle confined in a box, are singled out.

1. Introduction

A ‘free’ particle in a one-dimensional box is the canonical example of elementary non-

relativistic gquantum mechanics. Recently, at least in the physical literature [1], the boundary
conditions (BCs) that force the energy eigenfunctions to vanish at the walls of the box were
generalized to a four-parameter family of BCs for which the 8dimger ‘free’ Hamiltonian

is self-adjoint. These authors claim that this family of BCs is the general one for a particle

in a box. However, by using von Neumann’s theory of self-adjoint extensions of symmetric

operators, as exposed for example in [2], it was shown [3] that by maintaining the column
vectors of the BCs that relate linearly the wavefunction and its derivatives at the wall of the
box, there are three inequivalent families of self-adjoint extensions, one of which is that of
[1]. Moreover, these families represent the most general manifold of self-adjoint extensions
for a ‘free’ non-relativistic particle in a box [4].

In this paper, we examine, from the relativistic point of view, this problem by using
the Dirac equation. In the Weyl representation (WR), the most general BCs may be written
using only one family which splits into three families in the Dirac representation (DR). This
is the appropriate representation in order to take the non-relativistic limit.

On the other hand, the vanishing of the whole spinor at the walls yields to
incompatibility, that is to say, the problem has only the trivial solution [6]. The same
result has been obtained in the relativistic scattering on an impenetrable cylindrical solenoid
of finite radius [5,6]. This is not actually surprising, inasmuch as the spinor has four
complex components which are coupled in a system of first-order differential equations.
So, to force all the components to vanish at the boundary is too restrictive. Something
similar occurs in electromagnetism by requiring that the field tensor vanish at the walls of
a wave guide, the only solution being the trivial one. Imposing less restrictive conditions,

1 E-mail address: valonso@tierra.ciens.ucv.ve
i E-mail address: svincenz@tierra.ciens.ucv.ve

0305-4470/97/248573+13$19.5@C) 1997 IOP Publishing Ltd 8573



8574 V Alonso and S De Vincenzo

for example, by cancelling only parts of the electric and magnetic fields at the boundary, it
is found that a non-trivial solution exists (stationary waves).

A particular solution may be obtained by considering the Dirac equation with a Lorentz
scalar potential [7]; here the rest mass can be thought of asdependent mass. This
permits us to solve the infinite square well problem as if it is were a particle with a changing
mass that becomes infinite out of the box, so avoiding the Klein paradox [8].

By considering the ‘free’ Dirac Hamiltonian along with appropriate BCs, we can
simulate the presence of potentials that constrain the particle to be in a certain region,
but these BCs should be such that the corresponding Hamiltonian be self-adjoint. For this,
it is worth emphasizing that the specification of its domain, which includes the BCs, is an
essential part of the definition of all operators in quantum mechanics. Moreover, different
BCs lead to different physical consequences. For relativistic scattering problems [6, 9], it
has been proposed that the vanishing of only the large component of the Dirac spinor is a
physically acceptable BC. It can be easily seen that, for the ‘free’ particle in a box, in the
non-relativistic limit this BC yields the well known Dirichlet BC. Furthermore, such a BC is
only one of the infinite self-adjoint extensions of the ‘free’ Dirac Hamiltonian. This result,
as well as the eigenvalues and eigenfunctions for the family of self-adjoint extensions of
the ‘free’ Dirac Hamiltonian in the WR, was obtained in [10].

The problem of a Dirac fermion in a one-dimensional box interacting with a scalar
solitonic potential, with periodic [11], as well as with more general BC [12], was considered
earlier, in order to elucidate the phenomenon of the fractional fermion number. For the
case of the Dirac ‘free’ massless operator, alsqlin+ 1) dimensions, eigenvalues and
eigenfunctions have been obtained for a family of self-adjoint extensions in [13]. The case
with a non-zero vector potential was examined in [14].

In section 2, and in appendix A, we verify that in the WR the self-adjoint extensions
of the Hamiltonian of a ‘free’ Dirac particle in a one-dimensional box, may be written
by means of only one family. This family leads to three non-equivalent families of self-
adjoint extensions for this operator in the standard or DR. In the last part of section 2, for
each family of self-adjoint extensions,, we give the energy eigenvalues as well as several
examples of BCs which may be of physical interest. We also select the BCs according to
their invariance undeP andC PT transformations.

In section 3, the non-relativistic limit of each family of self-adjoint extensions in the DR
is obtained, as well as their non-relativistic energy eigenvalues. We write the most general
non-relativistic BCs obtained from the non-relativistic limit of the single relativistic family
in the WR.

2. Self-adjoint extensions

The Dirac equation for a relativistic ‘free’ particle inside a one-dimensional box, with fixed
walls atx = 0 andx = L, may be written as

iﬁi\ll(x, 1) = (—mcaa + mcz,B) W(x, 1) (1)
ot 0x

whereW denotes a two-component spinor depending upen$2 = [0, L] and upon time.
The 2x 2 matricese and 8 satisfy: af + fa = 0 anda? = 2 = 1. In the DR:a = o,
andB = o,. In the WR:a = o, and8 = o,.

The Dirac eigenvalue equation is given by

(Hy)(x) = <—iﬁcadci +mczl3> U(x) = Ey(x) @
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where is related to¥ by W (x, t) = ¥ (x)e "E/Mr,

The spinorsy (x) and (Hvy)(x) belong to a dense proper subset of the Hilbert space
H = L%(Q)® L*(Q), with a scalar product denoted loy). The domain off and its adjoint
H* verify Dom(H) € Dom(H*); but H must be self-adjoint, so we look for self-adjoint
extensions of the symmetric operatdr (appendix A).

In the DR,

_[(9X)
Yo(x) = (X(x))
where¢ andy are respectively, the spatial parts of the so-called large and small components
of the Dirac spinor. On the other hand, in the WR we write

Iﬁl(x))
Yo(x) )

In order to change representation, we use the transformatien (1/+/2)(¥1 + ¥») and
x = 1/vV2) (Y1 — ¥2).

Yw(x) = (

2.1. Self-adjoint extensions in the WR

In this representation there exists a four-parameter family of self-adjoint extensions of the
formal Hamiltonian operatotty = (Hw)g, ..z,

— d
(HW)H,[L,T,)/ = _Ihcaza + mCZGx (3)
with its domain given by [10, 12—-14]

DOM(H,) = | vy = 52 Vi € H. A.C. INQ, (Huthw) € H Yy fulfils

1//1(L)> (1/f2(L) ) -1 1}

=U , U"=U 4

( ¥2(0) ¥2(0) )
where hereafter a.c. means absolutely continuous functions and the syintenmodtes the
adjoint of a vector or a matrix. The unitary matiix may be written as

U=<§ w) (5)

wherev = €*€7cost, u = €"€” sing, s = €*e 7 sind andw = —&*e1* cosh, with
0<O <m0 u, 1,y <2m.

It is worth noting that with this parametrization the self-adjoint extensions are not
labelled in a single form, that is to say, the same boundary condition may be given by
a sub-family of parameters. Let us also point out that the same four-parameter family of
self-adjoint extensions is valid when a bounded potential is present inside the box.

It can be shown that for every spingr, € Dom(H,,), the current densityj (x) =
cw\fvozvfw satisfies at the walls of the box0) = j(L), and for some of the extensions
(6 = 0) it is verified that;j(0) = j(L) = 0, which leads to the relativistic impenetrability
condition at the walls of the box.

In appendix A, we briefly verify that in the domain @, are included all BCs that
make H,, self-adjoint.

In the WR the general solution of (2) can be written as

1 jkx Ehek \ i
Vw=c1| g5 € + 2 meo)e (6)

mc?
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wherek = (E? — (mc?)?)Y2/hc andcy, c, are arbitrary complex constants. Imposing upon
this spinor the BCs given in (4), an homogeneous algebraic system,fos is obtained,
whose determinant must be zero, and from which the following transcendental equation for
the energy eigenvalues follows:

E — hck\? E — hck\? .
cou —kL) — s coSu+kL)—|1— cosy siné
mc

mc?

E_T
+2 ( th> sint cosy sin(kL) = 0. ©)

mc?

2.2. Self-adjoint extensions in the DR

In order to obtain the non-relativistic families of BCs, let us first change to the DR. From
H,,, with its domain given in (4), and using the transformation from the WR to DR we have

14w u —xL)\ _ (1—-v —u ¢ (L) ®)
s 14+w xO )\ - 1-w 90 )
Then, three families of self-adjoint extensionsif are obtained. Firstly

— d
ngl) = (Hl:()l))e,lt,r,y = —IhCO’xa + MCZO’Z )

whose domain can be written as

Dom(H) = {WD - <ﬁ) Yo € H,ac. inQ, (H o) € H, yo fulfils

—X(L)> (¢><L>> T}
=A ,A1=—(A 10
( £ (0) 1\ »(0) 1 (A1) (10)
where
i _1 { cosp — cost cos —€7 sind
Ar =I(siny — sinT coso) ( —e 7 sing COoSu + COoSst cosh ) (11)
with the restriction sim — sint cosd # 0.
Likewise,
_d
Héz) = (Héz))g,,,“f,y = —ihcaxa + mczoz (12)
acting on the domain
@y _ (¢ - @ :
Dom(Hy") = {1yp = X Yp € H,a.c. inQ, (Hy Yp) € H, yp fulfils
¢(L)> <—X(L)) 1—}
=A ,A2=—(A 13
(¢(O) 2\ ;0 2 (A2) (13)
where
L : _1 ( cOSu + cost cosy €’ sing
Az =1(Sinu + sinT COSO) < e 7 sing COSy — COST cos@) (14)

with the restriction sim + sint cost # 0.

Let us note that the boundary conditions included in (10) are not always equivalent to
those given in (13), because det and detd, may be zero. Thusd” and H” are two
different families of self-adjoint extensions of the relativistic ‘free’ Hamiltonian.

Finally, let us consider the cases where the above two restrictions are changed to
sinu — sintcosd = 0 and sinu + sint cosd = 0. This corresponds to the vanishing
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of the determinants of the matrices in (8). It can be shown that all BCs in this new family
are obtained from (8), and are included in some of the following caseg: £)0, T = O;

(i) wu=0,7=m; (i) u=mn,t=0;and (V)u = 7, T = 7; where 0< 6 < 7 and

0< y < 27. We write this family as

— d
HY = (H Yo ey = —|hcaxa + mc?o, (15)

with the domain given by

Dom(HY) = {I/ID = <ﬁ Yp € H,a.c. inQ, (Hyp) € H, ¥p fulfils equation (8)
with the following cases: (iju =0,7 =0; (i) u =0, 7t = m;
(i) w ==, =0; and (iV)/,LZT[,‘L'zﬂ}. (16)

In the DR we have three energy eigenvalue equations, one for each Hamiltonian operator
Hél), Héz), H,§3). The general solution may be written as

Vo =d VE + mc? g 4 g VE —mc? o ik
D=\ VE —me? 2\ —VE +mc2
with d,, d, arbitrary complex constants. By imposing upon this solution the boundary

conditions included in the domains of the operataf§”, H?, HS’, the following
eigenvalue equations are obtained

(17)

{E + (CDIme? | B+ (D me D,} Sin(kL) + F;k coSkL) — Gk = 0 (18)
he he
where
Sirf § — cog u + co  cog 6 2 cosu
;= (sinp + (—1)7 sint cosp)? i= sinp + (—=1)7 sint cosy
and
G, = 2sing cosy with j =1, 2.

sinu + (—=1)/ sint cosd
The casej = 1 corresponds to the eigenvalue equatiorHgP and j = 2 to H?. For the
third family, the energy eigenvalues &> are obtained from
co9kL) = £ sin6 cosy (29)

where the upper sign corresponds to the cases (i) and (ii) and the lower sign to the cases
(ii) and (iv).

2.3. Some typical BCs

BCs are frequently referred to spinors in the DR because of its non-relativistic limit. We
therefore give several examples involviilg, which also belong to DoliH,,):

(@)
0=0 p=t=mn/2 0<y <2r
BC: $(0) = ¢(L) = 0 € Dom(H)
(b)

6=0 u=m/2 T=231/2 o<y <2n
BC: x(0) = x(L) = 0 € Dom(HS")
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(c)
6=0 u=1=0m Oy <2rn
BC: $(0) = x(L) = 0 € Dom(HY)
(d)
0=0 {u#t}=0,7 O<y<2n
BC: ¢ (L) = x(0) = 0 € Dom(HSY)
(e)
6=0 u=0 T=m/2 Oy <2n
BC: x(L) =i¢(L) and x (0) = —i¢(0) € Dom(H") N Dom(H?)
®
0=m/2 uw=y=0nx t=0,nx
BC:  yp(0) = yp(L) € Dom(H)
(9)

0=m/2 {u£y}=0,x =07
BC: ¥p(0) = —yp(L) € Dom(HY).

It is worth noting that all these BCs are obtained without making the matdi¢esd A,
singular, or those given in (8). On the other hand, the BCs (a)—(e), can be used if we consider
the walls of the box as impenetrable barriers, that is, for the current dgrisity= cwgox YD
to be zero at the walls of the box. The vanishing of the normal component (to any surface)
of the relativistic current density has been used in the MIT bag model of quarks confinement,
see, for example, [15]. 11+ 1) dimensions this BC is-(—i)Bay = ¢, where the minus
sign corresponds t® = 0 and the plus sign te = L. This BC in the DR is precisely (e).

2.4. Parity andC PT invariance

Let us single out the BCs which are symmetric under space invejand those which
areCPT invariant. The Dirac spinor transforms under the discrete transformakipfis C
in the Weyl representation according to

PWy(x,1) = o, Ww(L — x, 1)
TWy(x,1) = =0, Wy (x, —1)
CWy(x,t) =0, Wy(x, 1)
(CPT)Vy(x,t) = —o, V(L — x, —t)

(20)

where W is the complex conjugate of. In order to change from the WR to the DR it is
enough to replac&,, — ¥p ando, < o,.
If the Hamiltonian in the WR is invariant under the parity transformation we write

Then, the spinor must satis®y,, € Dom(Hy), that is, the parity transformed spinor must
obey the same BC ag,, does. Thus, the parameteysand r take the valuey = O;
t=m/2,3t/20ory =m; T =mx/2, 3r/2. For a particle confined in a bo#,= 0 and the
four-parameter unitary matrix becomes

i 10
(u£(/2))
U=¢ ( 0 1) . (22)
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Similarly, in order to obtain & PT invariant Hamiltonian, we require
(CPT)Hy, = Hy(CPT). (23)

So, (CPT)Yw € Dom(Hy) if w =0; y =0, 7 or u = 7; y = 0, 7. In addition, for a
particle confined in a boX§ = 0 and

€ 0
U=:|:( 0 _e_h). (24)
In the DR the corresponding BCs are MIT bag-like which foe 7/2 become
x(L) = Fip(L) x(0) = £ig(0). (25)

From those BCs given in section 2.3, the cases (a), (b), (e), (f), and (g) are invariant under
the parity transformation, but only (e), (f), and (g) & T invariant.

3. Non-relativistic limits (NRLS)

As is well known, in the DR the Dirac equation (2) for stationary states is equivalent to the
system

-— d _ 2 _ — d _ _ 2
—Ihcaqb =(E+mc)y 'hCaX = (E —mc%)¢. (26)

We achieve the NRL by letting — oo. However, the Dirac operato# (c) — mc?,
makes no sense for= co. The correct way to analyse the NRL is to look at its resolvent. It
has been proved [7, 16] that the NRL of the Dirac resolvent is the resolvent of adbuiper
or Pauli operator times a projection to the upper components of the Dirac wavefunction.
Then, the eigenvaluest(c) — mc?, are analytic in the parameterc®. Likewise, the
upper or large component is analytic ifct. So, assuming thap(x,c) = ¢(x, —c),
x(x,¢c) = —x(x,—c), and E(c) = E(—c), the functionsg (x, —c) and x (x, —¢) satisfy
equations (26) witlr — —c; consequently, we may write the following expansions fior
¢(x,c) and x (x, ¢) [17]

1 1
¢:¢NR+;¢1+?¢2+“'
1 1 1
X=-XNR+ X1+ X2+ (27)
C C C
and for the energy
9 1 1
E = mc +ENR+7E1+7E2+ (28)
C C

Substituting relations (27) and (28) in (26) and comparing the terms of the lower order,
the following system is obtained:

i%¢NR + %XNR =0 i%XNR + %¢NR =0. (29)
Eliminating xngr, We obtain the eigenvalue Sdudinger equation
n?
(HNRONR) (X) = —%@%R(x) = ENRPNR(X). (30)

Here,¢nr belongs to the Hilbert spadeng = L2(2), with scalar product denoted hy).
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In the NRL, the connection between the componentnd x of the Dirac spinon/p,
and the Schidinger eigenfunctiomyg, is obtained by keeping only the first term of the
expansions (27), and using the first equation of (29), that is

. d
¢ — IR X — _MabeR (31)

wherel = k/(2mc). With these relations we may calculate the NRL up to order df
any quantum mechanical expression(in+ 1) spacetime dimensions, as well as of each
relativistic family of self-adjoint extensions.

Let us now consider the operatqbiél). In the NRL, the matricial BC included in its
domain becomes

(—w;m(L)) i (¢>NR<L>>

Lpr(0) (V)

where the primes, hereafter, point out differentiation with respeat. tdhe matrixA; is
anti-Hermitian, so41 = M7 is Hermitian.

The first four-parameter family of self-adjoint extensions of the non-relativistic ‘free’
Hamiltonian operator consists of the operators

@ @ R o
H\g = (H\R)o.p.0.y = o di2 (32)
with domain
Dom(H\p) = {¢NR|¢NR € Hur, ¢nr and gl a.C. i2, (Hipénr) € Har, dnr fulfils
—A¢/NR(L>) e <¢NR(L)> o T} o
( ABi(0) 1 () ) ML= (MO (33)

In appendix B, we obtain, as an example, the NRL of the Hermiticity condition imposed
upon the operatot”. This, leads to the Hermiticity condition for the operafén.

Analogously, the NRL of the familie&?’ and HS? lead to the operator&2 and H,>
respectively, with their domains

H? — (H(Z)) — _ﬁiz (34)
NR = VINR/O. .7,y 2m dx2
Dom(H,f,ng) = {¢NR|¢NR € Hnr, ¢NR and¢,/\,R a.c. inQ, (H,ilzé(ﬁNR) € HnR, ¢NR fulfils
Pnr(L) —ApNr(L) ) T}
= M ’ ) M = M 35
<¢NR<0) ) 2 < Apip(0) ) M2 = (M2 (35)
where M, = —iA,, and finally
% d?
H\g = (H\Roury = =55 (36)

Dom(H[Ej:;)Q)) = {¢nrIONR € Hnr, dNr @aNd g a.C. INC2, (H|§2¢NR) € HNR, $NR
fulfils equation (8) with relations (31) for the cases given in {16) (37)
The energy eigenvalue equations Ye),ﬁng and H,i,zp){, obtained from the NRL of (18) are
given respectively by
{(MnR)? + D1} Sin(knrL) + Fidkng COSknRL) — Girkng = 0 (38)

{(MnR)2D2 + 1) sin(knr L) + Farkng COSkNRL) — Godkng = 0 (39)
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with hkng = /2mEng. Likewise, the energy eigenvalues H}fﬁ; are
cogknrL) = +sind cosy (40)

where the plus sign corresponds to the cases (i) and (ii) and the minus sign to the cases (iii)
and (iv). The transcendental equation for the eigenvaludﬂ;ﬁ,ﬁfis a function f (kng) = O,
similar to that obtained by da Luz and Cheng [1].

The BCs given in the Do(rH,f,lF;) are similar to those in the literature [1]. In order
to have the most general BC for a non-relativistic ‘free’ particle inside a box, we have
to consider all these three families with domains given by, mﬁgﬂ), Dom(H,ﬂzpl), and
Dom(H,@) [3]. However, it is possible to have only one matricial condition that includes
all possible BCs for which the self-adjointness Bfr is maintained. This condition is
precisely the NRL of the matricial BC included in DoH,).

In fact, this family of four-parameter Hamiltonians is
R? o
Hnr = (HNR)6, 7,y = o de? (41)

with domain
Dom(HnR) = {¢NR|¢NR € Hnr, dnrR @Nddyg a.C. INQ, (Hyrenr) € Hir. ¢nr fulfils
SnR(L) — MdmR(L)) _u <¢NR(L) +/\i¢,’\,R(L)) u-l_ UT} 42
( R (0) + Aii(0) R (0) — Aigr(©) ) (42)
with U given by (5).
All possible BCs for whichHyg is self-adjoint are included in Dof#lyg). It is worth
noting that, as opposed to the results given in [1], all these BCs are obtained without making

infinite the elements of/. The NRLs of the BCs given in section 2.3 are
(a) ‘Dirichlet condition’

PNR(0) = Pnr(L) = 0 € Dom(H\R)
(b) ‘Neumann condition’
$ur(0) = Gir(L) = 0 € DOM(HSR)
(c) ‘Mixed condition’
$nR(0) = P{r(L) = O € DOM(H\R)
(d) ‘Another mixed condition’
SNR(L) = ¢{r(0) = 0 € DOM(H\R)
(e) ‘NRL in the MIT bag model’
—AppR(L) = nR(L) andadir(0) = ¢nr(0) € Dom(HyR) N Dom(H )
(f) ‘Periodic condition’
ONR(0) = onR(L) anddjr(0) = ¢lr(L) € DOM(HyR)
(9) ‘Anti-periodic condition’
ONR(0) = —pnr(L) anddyr(0) = —dr(L) € DOM(HR).

Obviously, these BCs represent different physical situations, in fact, (a)—(e) correspond
to different definitions of barrier impenetrability and, with thejur vanishes at the walls
of the box.
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4. Conclusions

The most general BCs to be satisfied by the Dirac spinor of a relativistic ‘free’ particle in
a one-dimensional box in the WR, can be given in terms of only one family of self-adjoint
extensions of four parameters of the ‘free’ Dirac Hamiltonian. In order to obtain the NRL,
one must change to the DR. However, this procedure leads to three families of self-adjoint
extensions for the Hamiltonian; that is to say, there are three types of BC for which the ‘free’
Hamiltonian of the DR is self-adjoint. Taking the non-relativistic limit of each one of these
families, we have obtained three families of self-adjoint extensions for the non-relativistic
‘free’ Hamiltonian. It is worth stressing that only the three families together provide all
possible BCs for a non-relativistic ‘free’ particle in a one-dimensional box, and that the
matrix parameters connecting the spinor components at the walls of the box take only finite
values. The corresponding eigenvalue equations depending on four parameters were also
obtained, as well as their non-relativistic limits. Since in the WR it is possible to write down
all self-adjoiint extensions in a single family, we have written the three previously found
non-relativistic families in terms of only one family. Among the infinite BCs for which
the Dirac ‘free’ hamiltonian is self-adjoint, we have singled out those which are invariant
under the space inversiah and under theC PT transformation. We emphasize that only
the MIT bag model-like BCs remain valid after imposing #ié T invariance.
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Appendix A

According to Von Neumann’s theory of deficiency indices, a symmetric operdtdras
self-adjoint extensions if the solutions. of the eigenvalues problel*y. = fiwy.,
o € R, belong toH, and if the dimensions of the solution spaegsverify n,. =n_ # 0.
In our case, it is not difficult to check that. = n_ = 2. Therefore, there exist families of
22 = 4 parameters of self-adjoint extensions.

Without using the machinery of Von Neumann'’s theory of self-adjoint extensions of
symmetric operators [2], and without intending to be rigorous, let us briefly consider the
construction of a self-adjoint operator from the formal Hamiltonian

_d
Hy = —ihcozd— + mc?oy, (A1)
x

whose dense domain may be written as

Dom(Hy) = {ww - (ﬁ)

Yw € H,a.c. iNQ, (HyYw) € H, With Y (0) =vw(L)=0¢.
(A2)

With the BC ¢, (0) = yn (L) = 0, Hy, is certainly a Hermitian operator, that is, for all
;1 77 € Dom(HW)

(Hwt, ) — (¢, Hwn) = ikc[(¢Ton) (L) — (¢To.n)(0)] =0 (A3)

and since DortH,,) is dense,H,, is a symmetric operator. Nevertheless, its eigenvalue
equation has only the trivial solutiog,, = 0. This suggests that the BC on the
wavefunctions in DortH,,) are too restrictive.



Boundary conditions for a Dirac particle in a box 8583

Then, it is necessary to extend the set of functions in Qi by allowing more general
BCs. A wider and simple domain of functions is obtained just by requitip0) = ¥ (L).
With this BC the eigenvalue equation &£, now has non-trivial solutions, and as we have
seen in section 2.3H,, with this BC is one of the infinite self-adjoint extensions of the
initial symmetric operator (Al).

On the other hand, the quantum dynamics requires Myabe a self-adjoint operator.
For this it is necessary that Da#i,) = Dom(H,;), whereH;, defined by the same formal
operator (Al) is the adjoint of the differential operafdy,. Its domain is defined as [2]

DOM(H;:) = {v = (”l>
v

(Hut,v) — (¢, Hiv) = ihe[(¢Tov)(L) — (¢To,v)(0)] = 0 (Ad)

v e H,a.c. inQ, (Hyv) € H}

with

for all

¢
Here, DontH,) < Dom(H;). Now the problem is choosing a sufficiently general set
of boundary conditions for which Do¢#,) = Dom(H;). If Dom(Hy) is fixed, H,
will be the adjoint of H,, if it has the maximal domain consistent with the vanishing
of (¢fo,v)(L) — (¢To,v)(0), for all ¢ € Dom(Hy).
In order to enlarge the initial domain @f,,, let us consider a pair of sufficiently general
linear relations among; (0), ¢1(L), £2(0), ¢2(L)

¢1(L) s2(L)
N = N A5
1(mm> 2(@@) (A3)
where N; and N, are matrices with complex elements.
If both determinants do not vanish, we write

)y _(a b $2(L)
(Q@)_<6d><m®>' (A6)

If det N; = detN, = 0, without loss of generality we can write

0 0)(a 83 84\ [ c2(L)

(m &)(mm)‘(o 0)(mm) (A7)
with 81, 82, 83, 84 being non-zero complex numbers. Nevertheless, with thisFBOmust
be a symmetric operator, and this implies thatéalmust be zero, sa;; (L) and ¢2(0) are
‘independent’, as well ag,(L) and ¢1(0).

Thus, by replacing the relation (A6) in (A4) it may be verified that a necessary and
sufficient condition for the vanishing @t fo.v)(L) — (¢fo,v)(0) is

(L)) _(a ¢ v1(L)
(w©)‘<bd)(mm)' (A8)
To make sure that Do(#,,) = Dom(H,}), this condition must be equivalent to (A6) and
this is satisfied if

aa+cc=1 bb+dd =1 ab +cd = 0. (A9)

These relations imply that the matrix in (A6) is unitary, so it has an inverse. Its general
form depends on four parameters.

In this way the chosen family of self-adjoint extensionsHyf is the most general one
and consists of the operatofBw)s, ..., given by (3) acting on the domain given by (4).

.= <§1) € Dom(Hy) and p = <:1> € Dom(Hy).
2 2
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Appendix B

The relativistic formal Hamiltoniar$" in the DR is a Hermitian operator, and therefore

satisfies the condition
(HP ¢, ) — (¢, HE n) = ihe[(¢Toan) (L) — (¢loum(©)] =0 (B1)

for all ¢ andn in the domain ofHél). Taking the NRL of the right-hand side term in (B1),
that is, making

(& INR _(m INR
4‘(;)*(—%@) and n_<ns>_><—ikn§m)

—

5 [ Ghrimr = BRI (L) — Griivg — Guriie) )] = 0. (82)

This last relation is preciselyH\\hinr. Tnr) — (Enr. Hinnng) = 0, that is,H(P is Hermitian.

Relation (B2) is valid for allzyg and nnyg in the domain oth(,ng.

Likewise, the NRL of the current density in the DR(x) = cwéowa, yields

one obtains

. _ h VR Py
JNR(X) = T (¢NR¢NR - ¢NR¢NR) .

Certainly, we can extend this procedure to the opera@’*, in order to obtain the
corresponding domain of the operator

H(l)* Tl d2
NROT T 2m de?
Its domain is
Dom(H,p*) = {vnrIvNR € Hir, @.C. INQ, (Hyg WNR) € HR)
with
(ijngRy UNR) — {¢NRs H[f]lpi*vNR) =0 (B3)

for all ¢ng € Dom(H,gg) andv\gr € Dom(H,f,g*).
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