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We consider the problem of a Majorana single-particle in a box in (1+1) dimensions. We show that
the most general set of boundary conditions for the equation that models this particle is composed of
two families of boundary conditions, each one with a real parameter. Within this set, we only have
four con�ning boundary conditions - but in�nite not con�ning boundary conditions. Our results are
also valid when we include a Lorentz scalar potential in this equation. No other Lorentz potential
can be added. We also show that the four con�ning boundary conditions for the Majorana particle
are precisely the four boundary conditions that mathematically can arise from the general linear
boundary condition used in the MIT bag model. Certainly, the four boundary conditions for the
Majorana particle are also subject to the Majorana condition.
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I. INTRODUCTION

A Dirac single-particle that always moves inside a one-dimensional �nite region, i.e., a Dirac particle in a one-
dimensional box, is not a common problem in relativistic quantum mechanics. This is the case even though we do
not need any external potential to con�ne the particle in this situation, only boundary conditions. Naturally, despite
everything, this problem has been treated in various contexts; see [1�6]. An important result is that the most general
family of boundary conditions for this type of particle (even when a bounded potential is present inside the box) has
four (real) parameters; i.e., these boundary conditions are parametrized by a unitary matrix [5].
A Majorana particle is a massive fermion that is its own antiparticle; hence, it must be electrically neutral [7, 8].

Among the known spin-1/2 particles, only neutrinos could be of a Majorana nature [9]. However, Majorana fermions
have recently emerged within condensed matter systems as exotic quasiparticle excitations; for instance, see [9�11]
and the references therein. The problem of a Majorana single-particle in a one-dimensional box was also recently
considered [12]. The authors of this article obtain the result that there are only four boundary conditions for Majorana
fermions that are truly con�ned inside the box; i.e., there are only four types of walls that con�ne a Majorana fermion.
However, there also exist boundary conditions that are not typical of a con�ned Majorana fermion, and these were
not considered in Ref. [12]. In the present paper, we obtain the most general set of boundary conditions for the
Majorana single-particle in a box.
The paper has been organized as follows. We begin the present section by introducing the Dirac equations (generally)

physically associated to the Dirac particle and its antiparticle. Thus, here, we also introduce the so-called charge-
conjugate wave function and the charge-conjugation matrix. Notice, however, that in a single-particle (electron) theory,
the charge-conjugation operation changes a positive-energy electron state into a negative-energy electron state. Also,
we obtain a formula that relates the matrices of charge-conjugation in any two representations with the respective
unitary similarity matrix that changes the gamma matrices between these two representations. We particularize this
formula by choosing an arbitrary representation as the representation of departure and the Majorana representation
as the representation of arrival.
In section II, �rst, we introduce the Majorana condition, i.e., the condition that de�nes a Majorana particle or

fermion. Then, we investigate the implications of imposing the Majorana condition upon the Dirac wave function in
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the Majorana and Dirac representations. On the one hand, we determine that in the Majorana representation, the
Majorana condition implies that the Dirac wave function is real, and it satis�es a real Dirac equation. The latter can
be considered as an equation for the Majorana particle. Additionally, we obtain that in the Dirac representation, the
Majorana condition implies that the two components of the Dirac wave function are related, and hence, we obtain
a complex equation of �rst-order in time and space for each of these components. One or the other can also be
considered as an equation for the Majorana particle.
In section III, �rst, we note that any family of boundary conditions for the self-adjoint Dirac Hamiltonian operator

in a box in the Dirac representation has a similar family of boundary conditions for the self-adjoint Dirac Hamiltonian
operator in a box in the Majorana representation, and vice versa. Thus, both families of boundary conditions can
be written in the same form. Because the most general family of boundary conditions in the Dirac representation is
known [5], we can write the most general family of boundary conditions in the Majorana representation. Second, on
the latter four-parameter family of boundary conditions, we impose the Majorana condition, and this leads us to the
most general set of boundary conditions for the Majorana single-particle in a box (that is written in the Majorana
basis). The latter is composed of two one-parameter families of boundary conditions. Within these families, we only
have four (i.e., two plus two) con�ning boundary conditions, i.e., four boundary conditions that lead to the vanishing
of the probability current density at the ends of the box (which were obtained for the �rst time in Ref. [12]), and
many not con�ning boundary conditions. We also show that the four con�ning boundary conditions for the Majorana
particle are precisely the four boundary conditions that mathematically can arise from the general linear boundary
condition used in the MIT bag model [13�16]. Certainly, the four boundary conditions for the Majorana particle are
also subject to the Majorana condition. Finally, we write the most general set of boundary conditions for the equation
that models the Majorana particle (that is written in the Dirac basis). This set is composed of two one-parameter
families of boundary conditions for a single function, i.e., for the solution to the equation that models the Majorana
particle (for example, it could be the upper component of the Dirac wave function in the Dirac representation).
In section IV, we prove that the latter results are also valid if we add a Lorentz scalar potential to the equation for

the Majorana particle, in fact, this latter potential is the only Lorentz potential that can be added to this equation.
Finally, conclusions are presented in section V.
To begin, let ψ be the Dirac complex wave function of two components that satis�es the usual single-particle free

Dirac equation in a covariant form (
iγ̂µ∂µ −

mc

~

)
ψ = 0. (1)

Here, the matrices γ̂µ, with µ = 0, 1, are the Dirac gamma matrices [in (1+1) dimensions]. Speci�cally, γ̂0 ≡ β̂, γ̂1 ≡
β̂α̂, where the Dirac matrices, α̂ and β̂, are Hermitian, and they satisfy relations α̂β̂+ β̂α̂ = 0 and α̂2 = β̂2 = 1̂2 (1̂2 is

the 2× 2 identity matrix). Therefore, γ̂µγ̂ν + γ̂ν γ̂µ = 2gµν 1̂2, where g
µν = diag(1,−1). Additionally, (γ̂µ)† = γ̂0γ̂µγ̂0

(symbol † indicates the Hermitian conjugate of a matrix and an operator). These last two relations imply that the
gamma matrices are unitary, that is, (γ̂0)−1 = (γ̂0)†, and (γ̂1)−1 = (γ̂1)† (but only γ̂0 is Hermitian, or self-adjoint,
because it is a matrix, and γ̂1 is anti-Hermitian). The free Dirac equation in the Hamilton form,

i~
∂

∂t
ψ = ĥψ, (2)

with the corresponding Hamiltonian operator

ĥ = −i~c α̂
∂

∂x
+ mc2β̂, (3)

is obtained by multiplying Eq. (1) by the matrix ~cγ̂0(≡ ~cβ̂) from the left and using the relations (γ̂0)2 = 1̂2 and
γ̂0γ̂1 = α̂.
The so-called charge-conjugate wave function [17, 18],

ψC ≡ ŜC ψ∗, (4)

also satis�es Eq. (1), (
iγ̂µ∂µ −

mc

~

)
ψC = 0. (5)

In the writing of Eq. (4), the raised asterisk ∗ is used to denote the complex conjugate, and ŜC is the charge-
conjugation matrix. Because Eqs. (1) and (5) are equivalent (and equal in the free case), the matrices γ̂µ must satisfy
the relation

ŜC (−γ̂µ)∗(ŜC)−1 = γ̂µ. (6)
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The matrices γ̂µ are unitary because γ̂0γ̂1 + γ̂1γ̂0 = 0 and (γ̂0)2 = −(γ̂1)2 = 1̂2 and because (γ̂0)† = γ̂0 and
(γ̂1)† = −γ̂1. Similarly, the matrices (−γ̂µ)∗ are also unitary. In fact, because the metric gµν is real, we have

(−γ̂µ)∗(−γ̂ν)∗ + (−γ̂ν)∗(−γ̂µ)∗ = 2gµν 1̂2; moreover, ((−γ̂µ)∗)† = (−γ̂0)∗(−γ̂µ)∗(−γ̂0)∗. Therefore, ((−γ̂0)∗)† =
((−γ̂0)∗)−1 and ((−γ̂1)∗)† = ((−γ̂1)∗)−1. Because the matrices γ̂µ and (−γ̂µ)∗ have to satisfy the relation (6), the

matrix ŜC can be chosen to be unitary [and it is de�ned up to a phase factor that belongs to the group U(1) that is

not �xed by the relation (6) itself]. Here, we will consider that ŜC is unitary.
To pass one Dirac wave function that is written in a representation (or a basis), such as ψ, to another representation,

such as ψ′, we use the relation

ψ′ = Ŝ ψ. (7)

Likewise, the matrices γ̂µ transform in the following way:

γ̂µ ′ = Ŝ γ̂µŜ−1. (8)

The similarity matrix Ŝ can be chosen to be unitary because each γ̂µ is unitary (and it is de�ned up to a phase factor).
The charge-conjugate wave function ψC can also be passed from one representation to another using the same relation
(7), i.e.,

ψ′C = Ŝ ψC . (9)

Thus, because we assumed that the relation that connects ψ with ψC has the form given by the Eq. (4),

ψC ≡ ŜC ψ∗, (10)

we can also assume that the relation that connects ψ′ with ψ′C has the form

ψ′C ≡ Ŝ′C (ψ′)∗, (11)

in which case, we have

Ŝ′C = Ŝ ŜC (Ŝ∗)−1. (12)

In fact, by substituting Eqs. (10) and (11) into Eq. (9), we obtain the relation Ŝ′C(ψ′)∗ = Ŝ ŜC ψ
∗, and by substituting

in the latter the complex conjugate of Eq. (7), (ψ′)∗ = Ŝ∗ψ∗, we �nally obtain Eq. (12). Note that this formula is

similar to the one that relates the gamma matrices in the two representations [Eq. (8)], but only when the matrix Ŝ
is real.
The formula (12) permits us to pass the matrix ŜC from one representation to another, provided the respective

unitary similarity matrix that changes representation to the matrices γ̂µ is known (Ŝ). Clearly, the matrix ŜC (and

also the matrix Ŝ) is determined up to an arbitrary phase factor. Table 1 shows us, among other things, the results

derived from the formula (12) by passing the matrix ŜC from the Dirac representation (or standard) to the Majorana

representation (and also to the Dirac representation itself). Additionally, matrix Ŝ in Table 1 refers to the matrix that
permits us to pass from the Dirac representation to the Majorana representation (and also to the Dirac representation
itself). In this paper, it will only be necessary to explicitly consider these two representations.

Representation α̂ β̂ ≡ γ̂0 β̂α̂ ≡ γ̂1 Ŝ ŜC (Dirac) Ŝ′C

Dirac σ̂x σ̂z iσ̂y 1̂2 σ̂x σ̂x
Majorana σ̂x σ̂y −iσ̂z

1√
2
(1̂2 + iσ̂x) −iσ̂x 1̂2

Table 1

Once again, notice that matrix ŜC must only satisfy the relation ŜC (−γ̂µ)∗(ŜC)−1 = γ̂µ [Eq. (6)]; therefore, that

matrix is determined up to a phase factor. If we change the phase factor of the matrix ŜC in the Dirac representation,
the matrix ŜC that is obtained from formula (12) (identi�ed here as Ŝ′C) changes in a factor that is also a phase.

Thus, the charge-conjugate wave function in any representation is given by ψC ≡ ŜC ψ
∗ [Eq. (10)], where ŜC =

Ŝ−1Ŝ′C Ŝ
∗ [the latter comes from Eq. (12)]. Then, if Ŝ is the unitary matrix that takes us from that representation

(any representation) to the Majorana representation, we have Ŝ′C = 1̂2; therefore, we can write the following result:

ψC ≡ ŜC ψ∗ = Ŝ†Ŝ∗ψ∗. (13)
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Notice that ŜC = Ŝ†Ŝ∗ also veri�es the relation

(ŜC)† = (ŜC)∗. (14)

Furthermore, because ŜC is a unitary matrix, the latter relation implies that (ŜC)−1 = (ŜC)∗. Clearly, if ψC ≡ ŜC ψ∗,
we can require that (ψC)C = ψ. This relation implies Eq. (14) because ŜC is unitary.

II. THE MAJORANA PARTICLE

A Majorana particle or fermion is its own antiparticle. Therefore, the condition that de�nes a particle of this type is
given by

ψC = ψ (15)

(i.e., ψ is invariant under charge conjugation) [17]. The latter is called the Majorana condition (this condition is
sometimes written as ψC = ωψ, where ω is an arbitrary phase factor). In any representation, this condition implies
the result

ψ = ŜC ψ
∗ = Ŝ†Ŝ∗ψ∗, (16)

where we used Eq. (13), and the matrix Ŝ is the unitary matrix that takes us from any representation to the Majorana
representation.
We can investigate the implications of imposing the Majorana condition upon the Dirac wave function in the

Majorana and Dirac representations. For example, in the Majorana representation, we write the Majorana condition
as follows

ψ′C = ψ′ (17)

(in this case, we use primes to identify quantities in the Majorana representation). We write Eq. (16) as follows

ψ′ = (Ŝ)†(Ŝ)∗(ψ′)∗. (18)

Because the unitary matrix that takes us from the Majorana representation to the same Majorana representation is
Ŝ = 1̂2 (⇒ Ŝ′C = 1̂2), the following result is obtained:

ψ′ = (ψ′)∗, (19)

i.e., the Majorana condition imposed upon the Dirac wave function in the Majorana representation implies that this
wave function must be real. With this condition, we write the Dirac wave function ψ′ in the form

ψ′ ≡
[
φ1

φ2

]
=

[
(φ1)∗

(φ2)∗

]
. (20)

This wave function is the solution of the free Dirac equation (1) [or Eq. (2)] in the Majorana representation, with the
Majorana condition, namely,

i~
∂

∂t

[
φ1

φ2

]
=

[
0 −i~c ∂∂x − imc2

−i~c ∂∂x + imc2 0

] [
φ1

φ2

]
= ĥ′

[
φ1

φ2

]
. (21)

Clearly, in this case, the Dirac equation is a system of two coupled equations that is satis�ed by the components
φ1 and φ2, and also by the components (φ1)∗ and (φ2)∗; i.e., Eq. (21) is a real equation (the latter because of the
Majorana condition). It is worth mentioning that in one Majorana basis, the gamma matrices must satisfy the relation
(iγ̂µ)∗ = iγ̂µ (⇒ −(γ̂µ)∗ = γ̂µ). Of course, the representation here that is considered the Majorana representation
satis�es that relation (see Table 1). The latter implies that the Dirac operator iγ̂µ∂µ − mc

~ is real. Thus, just for
choosing matrices in the Majorana representation, the solutions of Eq. (1) can be chosen to be real. Finally, Eq. (21),
with its real-valued solutions, can also be considered as an equation for the Majorana particle. On a side note, the
Majorana representation used in the present article di�ers slightly from that used in Ref. [12]. In fact, in the latter

reference (and using the symbols used therein), ˆ̃γ0(= σ̂y) remains the same, but ˆ̃γ1(= +iσ̂z) changes. Precisely, these
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two representations verify ˆ̃γµ = σ̂y γ̂
µ ′ σ̂y, and

[
ψ̃1 ψ̃2

]T
= σ̂y [φ1 φ2 ]

T
(the symbol T represents the transpose of a

matrix).
In the Dirac representation, the Majorana condition, Eq. (15) or Eq. (16), leads us to the following relation:

ψ = Ŝ†Ŝ∗ψ∗ = (Ŝ∗)2ψ∗ = −iσ̂xψ
∗. (22)

The latter, because of the unitary matrix that takes us from the Dirac representation to the Majorana representation
is given by Ŝ = 1√

2
(1̂2 +iσ̂x) (⇒ ŜC = −iσ̂x). That is, the Majorana condition imposed upon the Dirac wave function

in the Dirac representation implies that

ψ ≡
[
ϕ
χ

]
= −iσ̂x

[
ϕ∗

χ∗

]
=

[
−iχ∗

−iϕ∗

]
, (23)

and this matrix condition imposes the following relation between the components of ψ:

χ = −iϕ∗ (⇔ ϕ = −iχ∗). (24)

Therefore, in this case, the two-component Dirac wave function could be written as

ψ =

[
ϕ
−iϕ∗

]
, (25)

that is, the solution of the free Dirac equation (1) [or Eq. (2)] in the Dirac representation,

i~
∂

∂t

[
ϕ
−iϕ∗

]
=

[
mc2 −i~c ∂∂x
−i~c ∂∂x −mc2

] [
ϕ
−iϕ∗

]
= ĥ

[
ϕ
−iϕ∗

]
. (26)

Eq. (26) implies that ϕ satis�es the following equation:

i~
∂

∂t
ϕ = −~c ∂

∂x
ϕ∗ + mc2ϕ. (27)

If we choose to write the wave function as ψ = [−iχ∗ χ ]
T
, the equation for χ is equal to Eq. (27) but with the

replacement of m → −m. In any case, it is enough to solve at least one of these two �rst-order equations because ϕ
and χ are algebraically related by the relation (24).
Equation (27) alone could be called the Majorana equation because it models the Majorana particle. However,

this equation is not precisely the equation that is known in the literature as the Majorana equation [17]. The latter
speci�cally reads

iγ̂µ∂µψ −
mc

~
ψC = 0. (28)

In any case, Eq. (27) is the equation for the Majorana particle in the Dirac representation. The Majorana condition
in the Dirac basis, ψC = ψ ⇒ −iσ̂xψ

∗ = ψ, is what leads to the equation for a single component of ψ, i.e., to
Eq. (27). Certainly, Eq. (28) together with the Majorana condition also leads us to the equation for the Majorana
particle in any representation [for example, to Eq. (21) in the Majorana representation and to Eq. (27) in the Dirac
representation].

III. THE MAJORANA (FREE) PARTICLE IN A BOX

The free Dirac Hamiltonian in (3), in the interval x ∈ Ω = [a, b] (a box), is an (unbounded) Hermitian, or formally

a self-adjoint, di�erential operator. In fact, because the matrices α̂ and β̂ (i.e., the bounded operators α̂ and β̂) are
Hermitian and because we formally have p̂ ≡ −i~∂/∂x = p̂† (i.e., without the speci�cation of its domain), we also

formally have ĥ = ĥ†. The Hamiltonian acts on two-component column vectors ψ = ψ(x, t) that belong to the Hilbert
space of the square integrable functions, H = L2(Ω) ⊕ L2(Ω), with a scalar product denoted by 〈ψ, ξ〉 ≡

�
Ω

dxψ†ξ,

and norm ‖ ψ ‖ ≡
√
〈ψ,ψ〉, and also, ĥψ ∈ H. Additionally, if ĥ is self-adjoint, ψ must only satisfy speci�c boundary

conditions at the ends of the interval Ω. These conditions de�ne the so-called domain of the Hamiltonian, D(ĥ). In

fact, ĥ is self-adjoint because ĥ = ĥ†, but then, we also have D(ĥ) = D(ĥ†) (for example, see Ref. [19]).
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It can be demonstrated that ĥ satis�es the following relation:

〈ψ, ĥξ〉 − 〈ĥψ, ξ〉 = −i~c
[
ψ†α̂ ξ

]∣∣b
a
, (29)

where [ f ]|ba ≡ f(b, t)− f(a, t). If the boundary conditions imposed upon ψ and ξ lead to the cancellation of the term

that is evaluated at the ends of the interval Ω in (29), 〈ψ, ĥξ〉 = 〈ĥψ, ξ〉; i.e., the operator ĥ is Hermitian [remember

that 〈ψ, ĥξ〉 = 〈ĥ†ψ, ξ〉 is, grosso modo, the relation that de�nes the adjoint operator ĥ† on a vector space]. If we make

ψ = ξ in the latter relation, we obtain 〈ψ, ĥψ〉 = 〈ĥψ,ψ〉 = 〈ψ, ĥψ〉∗ [⇒ 〈ψ, ĥψ〉 ≡ 〈ĥ〉ψ ∈ R, which is an expected
result for a Hermitian operator]. For the same reason, we have

c
[
ψ†α̂ ψ

]∣∣b
a
≡ [ j ]|ba = 0 ⇒ j(b, t) = j(a, t), (30)

where j = j(x, t) ≡ cψ†α̂ ψ is the probability current density. Any state in the domain D(ĥ) must satisfy the condition

given in Eq. (30) that depends only on the matrix α̂, i.e., that condition does not depend on the matrix β̂. Therefore,
any family of boundary conditions for the self-adjoint Dirac Hamiltonian in a box in the Dirac representation (α̂ = σ̂x),

ĥ = −i~c σ̂x
∂

∂x
+ mc2σ̂z, (31)

has a similar family of boundary conditions for the self-adjoint Dirac Hamiltonian in a box in the Majorana represen-
tation (α̂′ = α̂ = σ̂x),

ĥ′ = Ŝ ĥ Ŝ† = −i~c σ̂x
∂

∂x
+ mc2σ̂y, (32)

and vice versa (here, the word similar means that both families of boundary conditions can be written in the same

form). We know that for the �rst Hamiltonian (ĥ) the most general family of boundary conditions has the following
format (we omit the variable t in any component of the Dirac wave function and in j hereinafter)[

ϕ(b) + χ(b)
ϕ(a)− χ(a)

]
= Û

[
ϕ(b)− χ(b)
ϕ(a) + χ(a)

]
, (33)

where Û is a matrix that belongs to the group U(2) (see Refs. [5, 6]). Thus, for the second Hamiltonian (ĥ′) that is
written in the Majorana representation, the most general family of boundary conditions can have the following format
(the same format as in the precedent family)[

φ1(b) + φ2(b)
φ1(a)− φ2(a)

]
= Û ′

[
φ1(b)− φ2(b)
φ1(a) + φ2(a)

]
, (34)

where Û ′ is a unitary matrix and has four real parameters. To obtain Eq. (34), in Eq. (33) we made the replacements

ϕ→ φ1, χ→ φ2, and Û → Û ′. An achievable choice (or parametrization) for the matrix Û ′ is given by

Û ′ = exp(iµ)

[
m0 − im3 −m2 − im1

m2 − im1 m0 + im3

]
, (35)

where µ ∈ [0, π) and the other real quantities (m0, m1, m2, and m3) satisfy (m0)2 + (m1)2 + (m2)2 + (m3)2 = 1. Note

that the unitary matrix Û ′ veri�es det(Û ′) = exp(i2µ). The family of boundary conditions (33) or (34) is the most
general family of boundary conditions for a Dirac particle in a box.
As we observed in section II, the Majorana condition in the Majorana basis, ψ′C = ψ′, imposed upon the corre-

sponding Dirac wave function, ψ′ = [φ1 φ2 ]
T
, implies that this wave function is real (ψ′ = (ψ′)∗). Thus, both φ1 and

φ2 as (φ1)∗ and (φ2)∗ satisfy the general boundary condition (34), in which case the matrix Û ′ must be real

Û ′ = (Û ′)∗. (36)

The latter condition implies that the matrix Û ′ must be orthogonal, i.e., (Û ′)† = ((Û ′)∗)T = (Û ′)T = (Û ′)−1.

Therefore, the determinant of Û ′ is either +1 or =1. Particularly, in the case det(Û ′) = 1 (µ = 0), the matrix Û ′

satisfying the reality condition takes the form
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Û ′ =

[
m0 −m2

m2 m0

]
, (37)

where (m0)2+(m2)2 = 1, i.e., m1 = m3 = 0. Thus, Û ′ belongs to the group SO(2). Likewise, in the case det(Û ′) = −1

(µ = π/2) the matrix Û ′ takes the form

Û ′ =

[
m3 m1

m1 −m3

]
, (38)

where (m1)2 + (m3)2 = 1, i.e., m0 = m2 = 0. Thus, the �rst general boundary condition for the Majorana particle or
fermion in the Majorana basis can be written as:[

φ1(b) + φ2(b)
φ1(a)− φ2(a)

]
=

[
m0 −m2

m2 m0

] [
φ1(b)− φ2(b)
φ1(a) + φ2(a)

]
, (39)

where φ1 and φ2 are real functions. Clearly, this is a one-parameter family of boundary conditions. Note that if we
had made the choice µ ∈ [0, π], we would have obtained the term (±1) in front of the square matrix in Eq. (38).
The sign (+) would correspond to the case µ = 0; and the sign (−) to the case µ = π. These two cases give rise to
two identical one-parameter families of boundary conditions. Likewise, the second general boundary condition for the
Majorana particle in the Majorana basis can also be written as:[

φ1(b) + φ2(b)
φ1(a)− φ2(a)

]
=

[
m3 m1

m1 −m3

] [
φ1(b)− φ2(b)
φ1(a) + φ2(a)

]
, (40)

where φ1 and φ2 are real functions. The latter is also a one-parameter family of boundary conditions. These two
general families of boundary conditions describe all the possible boundary conditions for the Majorana particle in the
Majorana basis.
Within Eqs. (39) and (40), there exist con�ning and not con�ning boundary conditions. On the one hand, the

called con�ning conditions lead to the vanishing of the probability current density at the ends of the box, i.e.,

j(b) = j(a) = 0. (41)

It is easy to see that j = cψ†α̂ ψ is invariant under a change of unitary representation [6]. Thus, the impenetrability
condition in (41) does not change by changes of representation. On the other hand, we already know that for the

boundary conditions that verify the condition in (41), the matrix Û in (33) is a diagonal matrix (see Ref. [5]). Then,

the matrix Û ′ in (34) must also be diagonal for that condition to be satis�ed. Incidentally, by explicitly imposing the

latter condition of diagonality on the matrix Û in (33), it can be shown that a two-parameter subfamily of con�ning

boundary conditions is obtained, not a one-parameter subfamily. Thus, if the matrix Û ′ in (34), i.e., the matrix (37),
is diagonal, we have m2 = 0, and therefore, m0 = ±1. Consequently,

Û ′ = ±1̂2 (µ = 0). (42)

These results give us the following two boundary conditions:

φ2(a) = φ2(b) = 0, (43)

in the case of m0 = 1. In addition,

φ1(a) = φ1(b) = 0, (44)

in the case of m0 = −1. Likewise, if the matrix Û ′ in (34), i.e., the matrix (38), is diagonal, we have m1 = 0, and
therefore, m3 = ±1. Consequently,

Û ′ = ±σ̂z (µ = π/2). (45)

These results give us the following two boundary conditions:

φ1(a) = φ2(b) = 0, (46)
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in the case of m3 = 1. In addition,

φ2(a) = φ1(b) = 0, (47)

in the case of m3 = −1.
These two pairs of boundary conditions can be passed to the Dirac basis via the matricial relation

ψ′ =
1√
2

(1̂2 + iσ̂x)ψ ⇒
[
φ1

φ2

]
=

1√
2

[
1 i
i 1

] [
ϕ
χ

]
. (48)

Therefore, the boundary condition in (43) takes the form

ϕ(a) = +iχ(a) , ϕ(b) = +iχ(b), (49)

and the condition in (44) is

ϕ(a) = −iχ(a) , ϕ(b) = −iχ(b). (50)

Likewise, the boundary condition in (46) takes the form

ϕ(a) = −iχ(a) , ϕ(b) = +iχ(b), (51)

and the condition in (47) is

ϕ(a) = +iχ(a) , ϕ(b) = −iχ(b). (52)

From the Majorana condition in the Majorana representation, ψ′ = (ψ′)∗ [Eq. (19)], and using Eq. (48), we obtain
χ = −iϕ∗(⇔ ϕ = −iχ∗). Thus, the functions ϕ and χ in Eqs. (49)-(52) must obey the latter relation (which obviously
is the Majorana condition in the Dirac representation [Eq. (24)]). Using this relation, we can write the boundary
conditions in equations (49)-(52), for example, only in terms of ϕ,

ϕ(a) = ϕ∗(a) , ϕ(b) = ϕ∗(b), (53)

which comes from the condition in (49), and analogously,

ϕ(a) = −ϕ∗(a) , ϕ(b) = −ϕ∗(b), (54)

which comes from the condition in (50). Likewise,

ϕ(a) = −ϕ∗(a) , ϕ(b) = ϕ∗(b), (55)

which comes from the condition in (51), and analogously,

ϕ(a) = ϕ∗(a) , ϕ(b) = −ϕ∗(b), (56)

which comes from the condition in (52). The boundary conditions (53)-(56) are precisely the boundary conditions for
the equation that describes the Majorana particle, i.e., for Eq. (27). The latter four boundary conditions were also
recently obtained in Ref. [12].
It is very interesting to note that these four apparently uncommon boundary conditions are actually typical bound-

ary conditions. Speci�cally, the boundary condition in (53) is a Dirichlet boundary condition imposed upon the
function Im(ϕ), i.e.,

Im(ϕ(a)) = Im(ϕ(b)) = 0. (57)

Likewise, the boundary condition in (54) is a Dirichlet boundary condition imposed upon the function Re(ϕ), i.e.,

Re(ϕ(a)) = Re(ϕ(b)) = 0. (58)

On the other hand, the boundary conditions in (55) and (56) are mixed boundary conditions, i.e.,

Re(ϕ(a)) = Im(ϕ(b)) = 0, (59)
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and

Im(ϕ(a)) = Re(ϕ(b)) = 0, (60)

respectively.
For the problem of a Dirac single-particle in a one-dimensional box, the con�ning boundary conditions are charac-

terized by the condition given by Eq. (41), i.e., the probability current density must be zero at the ends of the box.
The latter condition can also be written as

nµψ̄γ̂
µψ = 0 at x = a and x = b, (61)

where ψ̄ ≡ ψ†γ̂0 = ψ†β̂ is the Dirac adjoint of ψ, and nµ = (n0, n1) = (0,±1) is a unit two-vector normal to the
surface of the con�ning region. Indeed [in (1+1) dimensions],

nµψ̄γ̂
µψ = n0ψ̄γ̂

0ψ + n1ψ̄γ̂
1ψ = 0− n1ψ̄γ̂1ψ = ∓ψ̄γ̂1ψ = ∓ψ†γ̂0γ̂1ψ = ∓ψ†α̂ψ = 0 ⇒ j = 0,

at x = a and x = b.
In the so-called MIT bag model for hadronic structure [13�16] (although here we have it in its one-dimensional

version [4, 5, 20]), the condition (61) is satis�ed by imposing the following general linear boundary condition:

inµγ̂
µψ = ψ at x = a and x = b, (62)

nevertheless, this implies that ψ̄ψ = ψ†β̂ψ is also zero at those points. Hence, the con�ning boundary conditions of the

MIT bag model allow the Hamiltonian ĥ′ in (32) (and ĥ in (31)), as well as the operator cβ̂p̂ = −i~cβ̂ ∂/∂x, to be self-
adjoint [Incidentally, the latter operator is real in the Majorana basis]. A complete discussion about one-dimensional
self-adjoint Dirac operators and their boundary conditions can be found in Ref. [6].
Usually, we choose nµ = (0,−1) at x = a, and nµ = (0, 1) at x = b, i.e., the unit two-vector normal to the surface

of the box is pointing outward from the wall. Thus, the boundary condition given by Eq. (62) takes the form

+ iβ̂α̂ψ = ψ at x = a, and − iβ̂α̂ψ = ψ at x = b (63)

(with primes, i.e., ψ → ψ′, etc., labeling quantities in the Majorana representation) [4, 5]. The latter is precisely
the boundary condition commonly used in the MIT bag model. Precisely, in the Majorana representation (α̂′ = σ̂x,

β̂′ = σ̂y), this boundary condition takes the form φ2(a) = 0, φ1(b) = 0. To obtain the latter boundary condition from

the most general family of boundary conditions in (34) (with the matrix Û ′ in (35)), we must makem0 = m1 = m2 = 0,

m3 = −1, and µ = π/2 (⇒ Û ′ = −σ̂z). In the Dirac representation this boundary condition is ϕ(a) = +iχ(a),
ϕ(b) = −iχ(b). It is noteworthy that the boundary condition for the Dirac particle we have presented in this
paragraph, with the imposition of the Majorana condition, is precisely one of the four con�ning boundary conditions
found for the Majorana particle in the box [Eq. (47), or Eq. (52)]. In relation to this result, remember that φ1

and φ2 must be real-valued functions in the Majorana representation; this last condition arises from the imposition
of the Majorana condition upon the Dirac wave function. On the other hand, the Majorana condition in the Dirac
representation implies that ϕ and χ relate to each other [see Eq. (24)].
Obviously, we can also choose nµ = (0, 1) at x = a, and nµ = (0,−1) at x = b, i.e., in this case the unit two-vector

normal to the surface of the box is pointing inward from the wall. Therefore,

− iβ̂α̂ψ = ψ at x = a, and + iβ̂α̂ψ = ψ at x = b. (64)

In the Majorana representation, the latter boundary condition takes the form φ1(a) = 0, φ2(b) = 0. This boundary
condition can be obtained from Eqs. (34) and (35) by setting m0 = m1 = m2 = 0, m3 = +1, and µ = π/2

(⇒ Û ′ = +σ̂z). In the Dirac representation this boundary condition is ϕ(a) = −iχ(a), ϕ(b) = +iχ(b). The boundary
condition for the Dirac particle we have presented in this paragraph, with the imposition of the Majorana condition,
again is one of the four con�ning boundary conditions found for the Majorana particle in the box [Eq. (46), or Eq.

(51)]. It was recently shown that the free Dirac Hamiltonian operator ĥ(m) with the boundary condition in (63) is

unitarily equivalent to the free Dirac operator ĥ(−m) with the boundary condition in (64) [21]. Thus, the spectral
behavior of the MIT bag model depends on the sign of m, or equivalently, the orientation of the normal.
From a strictly mathematical point of view, we could also choose the unit two-vector normal in the form nµ = (0,−1)

at x = a, and also at x = b. Thus, we obtain the following boundary condition:

+ iβ̂α̂ψ = ψ at x = a and x = b. (65)
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In the Majorana representation, this boundary condition takes the form φ2(a) = 0, φ2(b) = 0. To obtain the latter

boundary condition from the most general family of boundary conditions in (34) (with the matrix Û ′ in (35)), we

must make m0 = +1, m1 = m2 = m3 = 0, and µ = 0 (⇒ Û ′ = +1̂2). In the Dirac representation this boundary
condition is ϕ(a) = +iχ(a), ϕ(b) = +iχ(b). The boundary condition for the Dirac particle we have presented in this
paragraph, with the imposition of the Majorana condition, again is one of the four con�ning boundary conditions
found for the Majorana particle in the box [Eq. (43), or Eq. (49)].
Likewise, we could also choose the unit two-vector normal in the form nµ = (0, 1) at x = a, and also at x = b. In

this case we obtain

− iβ̂α̂ψ = ψ at x = a and x = b. (66)

In the Majorana representation, the latter boundary condition has the form φ1(a) = 0, φ1(b) = 0. This boundary

condition can be obtained from Eqs. (34) and (35) by settingm0 = −1, m1 = m2 = m3 = 0, and µ = 0 (⇒ Û ′ = −1̂2).
In the Dirac representation this boundary condition is ϕ(a) = −iχ(a), ϕ(b) = −iχ(b). The boundary condition for
the Dirac particle we have presented in this paragraph, with the imposition of the Majorana condition, again is one
of the four con�ning boundary conditions found for the Majorana particle in the box [Eq. (44), or Eq. (50)].
We can also obtain not con�ning boundary conditions for the Majorana particle in a box. The latter do not

explicitly lead to the vanishing of the probability current density at the ends of the box. In this situation, the particle
certainly moves inside the box, but the ends could be seen to be physically connected; for example, the particle could
hit one wall and reappear at the other. First, we rewrite the boundary conditions in (39) and (40) in the following
manner: [

φ1(b)
φ2(b)

]
=

1

m2

[
0 −m0 − 1

m0 − 1 0

] [
φ1(a)
φ2(a)

]
, (67)

which comes from Eq. (39), with (m0)2 + (m2)2 = 1. Likewise,[
φ1(b)
φ2(b)

]
=

1

m1

[
m3 + 1 0

0 −m3 + 1

] [
φ1(a)
φ2(a)

]
, (68)

which comes from Eq. (40), with (m1)2 + (m3)2 = 1.
Notice that the 2× 2 matrix that connects the column vectors present in (67) is equal to its own inverse; that is to

say, the inverse expression of (67) is simply obtained making the replacements a→ b and b→ a. On the other hand,
the inverse matrix of the 2× 2 matrix in (68) is obtained from the latter making the replacement m3 → −m3. As we
observed before, two con�ning boundary conditions emerged from Eq. (39) by making m2 = 0, and two others from
Eq. (40) by making m1 = 0. Then, the boundary conditions (67) and (68) become not con�ning boundary conditions
only when m2 6= 0 and m1 6= 0, respectively.
The form of Eqs. (67) and (68) reminds us that we have to avoid making m2 = 0 and m1 = 0, respectively.

However, if we �rst multiply Eq. (67) [Eq. (68)] (and its respective inverse) by m2 [m1] and later we make m2 = 0
[m1 = 0], we can still obtain from them the con�ning boundary conditions (43) and (44) [(46) and (47)]. In fact, or
more speci�cally, (i) [to obtain the boundary condition (43)]: from Eq. (67), we have φ2(a) = 0, but then, m0 = 1.
From the inverse of (67), we have φ2(b) = 0, but then m0 = 1. (ii) [To obtain the boundary condition (44)]: from
Eq. (67), we have φ1(a) = 0, but then, m0 = −1. From the inverse of (67), we have φ1(b) = 0, but then, m0 = −1.
Likewise, (iii) [to obtain the boundary condition (46)]: from Eq. (68), we have φ1(a) = 0, but then, m3 = 1. From
the inverse of (68), we have φ2(b) = 0, but then m3 = 1. (iv) [To obtain the boundary condition (47)]: from Eq.
(68), we have φ2(a) = 0, but then, m3 = −1. From the inverse of (68), we have φ1(b) = 0, but then, m3 = −1.
Hence, from these results, it is clear that the one-parameter families of boundary conditions (67) and (68) comprise
the most general set of boundary conditions for the Majorana particle in the Majorana basis and include both the
non-con�ning boundary conditions and the (four) con�ning boundary conditions.
The boundary conditions (67) and (68) can be passed to the Dirac basis via the matricial relation (48). Thus, the

condition in (67) takes the form[
ϕ(b) + iχ(b)
χ(b) + iϕ(b)

]
=

1

m2

[
0 −m0 − 1

m0 − 1 0

] [
ϕ(a) + iχ(a)
χ(a) + iϕ(a)

]
, (69)

and the condition in (68) is written as follows[
ϕ(b) + iχ(b)
χ(b) + iϕ(b)

]
=

1

m1

[
m3 + 1 0

0 −m3 + 1

] [
ϕ(a) + iχ(a)
χ(a) + iϕ(a)

]
. (70)
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Using the Majorana condition in the Dirac representation, χ = −iϕ∗(⇔ ϕ = −iχ∗) [Eq. (24)], we can write the
boundary conditions in (69) and (70); for example, in terms of only ϕ, in fact[

ϕ(b)
ϕ∗(b)

]
=

i

m2

[
−m0 1
−1 m0

] [
ϕ(a)
ϕ∗(a)

]
, (71)

from Eq. (69), with (m0)2 + (m2)2 = 1, and[
ϕ(b)
ϕ∗(b)

]
=

1

m1

[
1 m3

m3 1

] [
ϕ(a)
ϕ∗(a)

]
, (72)

from Eq. (70), with (m1)2 + (m3)2 = 1. Following a similar procedure to that applied on conditions (67) and (68)
by making m2 = 0 and m1 = 0, but this time on the conditions (71) and (72), respectively (and on their respective
inverses), we obtain the boundary condition (53) [from Eq. (71) with m0 = 1] and Eq. (54) [from Eq. (71) with
m0 = −1]. Likewise, we obtain the boundary condition (55) [from Eq. (72) with m3 = 1] and Eq. (56) [from Eq.
(72) with m3 = −1]. The one-parameter families of boundary conditions (71) and (72) comprise the most general set
of boundary conditions for Eq. (27), which is what models the Majorana fermion. That equation arises by imposing
the Majorana condition, ψ = ψC , upon the Dirac equation in the Dirac basis.
The value of the probability current density, j ≡ cψ†α̂ ψ, does not depend on the representation. Thus, in one

representation the value is equal to the value in any other representation. In terms of the components of ψ′ (φ1 and
φ2) and ψ (ϕ and χ), we can write

j

c
= (φ1)∗φ2 + (φ2)∗φ1 = ϕ∗χ+ χ∗ϕ, (73)

and now using the Majorana condition, i.e., using the relations φ1 = (φ1)∗, φ2 = (φ2)∗ (in the Majorana basis), and
χ = −iϕ∗ (in the Dirac basis), we write

j

c
= 2φ1φ2 = −i(ϕ∗)2 + i(ϕ)2 = ξ†σ̂y ξ, (74)

where ξ ≡ [ϕ ϕ∗ ]
T
. It is easy to see that for the four con�ning boundary conditions in (53)-(56), the following relation

is veri�ed:

j(a) = j(b) = 0. (75)

Likewise, for the not con�ning boundary conditions given in (71) and (72), i.e., with m2 6= 0 and m1 6= 0, respectively,
we only have

j(a) = j(b). (76)

These are the expected results. We note in passing that the probability current density for the Dirac single-particle

[Eq. (73)] satis�es the equality j = jC at all points, where jC ≡ c ψ†C α̂ ψC . In fact, jC is a real-valued function;

therefore, jC = c (ψ∗C)† α̂∗ ψ∗C = c ψ† ŜC α̂
∗ Ŝ−1

C ψ, where the relations (10) and (14) and the unitarity of ŜC have been

used. Now using the relation ŜC α̂
∗ Ŝ−1

C = +α̂, which comes from Eq. (6), we obtain the desired result. Obviously, the
latter is also valid for the Majorana particle. On the other hand, the Dirac wave function ψ and its charge-conjugate
ψC should have opposite charge current densities [22] (i.e., abandoning the Dirac's theory as a single-particle theory).
To obtain a physically meaningful result in this case, we could de�ne J ≡ e j and JC ≡ −e jC = −e j (i.e., these two
quantities should carry opposite charges, e and −e); therefore, J = −JC . We should also have e = 0 for the Majorana
particle; therefore, J = JC = 0 at all points.

IV. THE MAJORANA PARTICLE IN A BOX WITH THE MOST GENERAL LORENTZ POTENTIAL
IN (1+1) DIMENSIONS

If in the free Dirac equation given in Eq. (1) the so-called standard minimal substitution is made, ∂µ → ∂µ + ie
~cAµ,

where Aµ = (A0, A1) = (Φ,A) (Φ ∈ R is the external electric potential and A ∈ R is the vector potential or the
spatial component of Aµ), then the Dirac equation for a fermion with charge e in the presence of some external
electromagnetic �eld Aµ is obtained. However, the potential Aµ, that is, a Lorentz two-vector, is not the most general
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potential that can be added to the free Dirac equation. The most general potential is a Lorentz covariant potential,
that is, a 2× 2 matrix-valued function,

V̂cov =
1

~c
S 1̂2 − iγ̂µ

ie

~c
Aµ +

1

~c
W γ̂5, (77)

where γ̂5 ≡ iγ̂0γ̂1 = iα̂ = −(γ̂5)†, S ∈ R is a scalar potential, and W ∈ R is a pseudoscalar potential. The Dirac

equation in the potential V̂cov has the form (
iγ̂µ∂µ − V̂cov −

mc

~

)
ψ = 0. (78)

The latter can also be written in the Hamilton form. In fact, by developing the sums in Eq. (78) (with the potential
given by Eq. (77)), we have[

1

c
γ̂0i

∂

∂t
+ γ̂1

(
i
∂

∂x
+

e

~c
A
)
− γ̂0 e

~c
Φ− 1

~c
S 1̂2 −

1

~c
W γ̂5 − mc

~

]
ψ = 0. (79)

And now, we obtain the desired equation by multiplying Eq. (79) by the matrix ~cγ̂0(≡ ~cβ̂) from the left and using

the relations (γ̂0)2 = 1̂2, γ̂
0γ̂1 = α̂, and γ̂0γ̂5 = iβ̂α̂:

i~
∂

∂t
ψ = ĥψ, (80)

where the Hamiltonian operator is given by

ĥ = cα̂

(
−i~

∂

∂x
− e

c
A
)

+ eΦ + S β̂ +W iβ̂α̂+ mc2β̂. (81)

This is a Hermitian operator, or formally self-adjoint, because the potentials, A, Φ, S, and W, are real-valued

functions; and also because iβ̂α̂ is a Hermitian matrix, as α̂ and β̂ are Hermitian. Certainly, we also formally have
p̂ ≡ −i~∂/∂x = p̂†.

The charge-conjugate wave function of ψ, ψC ≡ ŜC ψ∗, satis�es the following equation:(
iγ̂µ∂µ − V̂ Ccov −

mc

~

)
ψC = 0, (82)

where

V̂ Ccov =
1

~c
SC 1̂2 − iγ̂µ

ie

~c
ACµ +

1

~c
WC γ̂5. (83)

Moreover, the matrices γ̂µ and ŜC must satisfy the relation (6),

ŜC (−γ̂µ)∗(ŜC)−1 = γ̂µ, (84)

i.e., ŜC (iγ̂µ)∗(ŜC)−1 = iγ̂µ. Taking the complex conjugate of Eq. (78), placing the identity 1̂2 = (ŜC)−1ŜC next to

ψ∗, and multiplying it by ŜC from the left, we have[
ŜC(iγ̂µ)∗(ŜC)−1∂µ − ŜC(iγ̂µ)∗(ŜC)−1 ie

~c
Aµ −

1

~c
S ŜC 1̂2(ŜC)−1 − 1

~c
W ŜC(γ̂5)∗(ŜC)−1 − mc

~
ŜC(ŜC)−1

]
ŜC ψ

∗ = 0.

(85)

Using Eq. (84) and also ŜC (iγ̂5)∗(ŜC)−1 = iγ̂5 ⇒ ŜC (γ̂5)∗(ŜC)−1 = −γ̂5 (this is so because we have iγ̂5 ≡ iγ̂0 iγ̂1),
we can write Eq. (85) as follows(

iγ̂µ∂µ − iγ̂µ
ie

~c
Aµ −

1

~c
S 1̂2 +

1

~c
W γ̂5 − mc

~

)
ψC = 0, (86)

and comparing this result with Eq. (82) (with the potential given by Eq. (83)),(
iγ̂µ∂µ + iγ̂µ

ie

~c
ACµ −

1

~c
SC 1̂2 −

1

~c
WC γ̂5 − mc

~

)
ψC = 0, (87)
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we obtain the following relations:

ACµ = −Aµ , SC = S , WC = −W. (88)

In other words, the equivalence of Eqs. (78) and (82) implies that if ψ describes a fermion's state with positive energy
in the potentials Aµ, S and W, then ψC describes a fermion's state (not an antifermion's state) with negative energy
in the potentials −Aµ, S and −W . Certainly, we are considering the Dirac theory as a single-particle theory.
Then, comparing the Dirac equations for ψ and ψC (= ψ) and using the relations in (88), we obtain

Aµ = 0 , W = 0. (89)

Therefore, the Dirac equation describing Majorana particles can only contain a scalar potential,(
iγ̂µ∂µ −

1

~c
S 1̂2 −

mc

~

)
ψ = 0, (90)

where ψ must satisfy Eq. (16), i.e., the Majorana condition. The corresponding Hamiltonian operator is given by

ĥ = −i~c α̂
∂

∂x
+ (S + mc2)β̂ (91)

(the invariance of this Hamiltonian under the charge-conjugation operation was mentioned recently in Ref. [23]);
therefore, the Dirac equation [Eq. (80)] in the Majorana representation with the Majorana condition is precisely Eq.
(21) with the replacement of mc2 → S + mc2. The latter is a real equation because S is a real function. Similarly,
the Dirac equation [Eq. (80)] in the Dirac representation with the Majorana condition is precisely Eq. (26) with the
substitution of mc2 → S+mc2. The latter equation implies that the upper component of ψ in the Dirac representation,
ϕ, satis�es the following equation that models the Majorana particle in the presence of a scalar potential:

i~
∂

∂t
ϕ = −~c ∂

∂x
ϕ∗ + (S + mc2)ϕ. (92)

Clearly, all the results given above for the Dirac particle in a box do not change by the presence of a scalar potential.
See the discussion following Eq. (30). Particularly, the most general set of boundary conditions for the Majorana
particle in a box in the Majorana basis is given by Eqs. (39) and (40). As we have discussed before, within the
latter equations, there exist two plus two con�ning and several not con�ning boundary conditions. These boundary
conditions can be passed to the Dirac basis and then written only in terms of the upper component of the Dirac wave
function ϕ. In fact, all these boundary conditions compose the most general set of boundary conditions for Eq. (92),
namely, [

ϕ(b)
ϕ∗(b)

]
=

i

m2

[
−m0 1
−1 m0

] [
ϕ(a)
ϕ∗(a)

]
,

[
ϕ(b)
ϕ∗(b)

]
=

1

m1

[
1 m3

m3 1

] [
ϕ(a)
ϕ∗(a)

]
, (93)

where (m0)2 + (m2)2 = 1 and (m1)2 + (m3)2 = 1 [Eqs. (71) and (72), respectively].

V. CONCLUSIONS

In summary, the most general family of boundary conditions for a Dirac single-particle in a one-dimensional box has
four (real) parameters. However, the most general subfamily of con�ning boundary conditions has only two (real)
parameters: a two-parameter family at x = a and another family with the same two parameters at x = b (This
result was obtained making θ = 0 ⇒ u = s = 0 in Eq. (4) of Ref. [5]). On the other hand, the most general
set of boundary conditions for a Majorana single-particle in a one-dimensional box is composed of two families of
boundary conditions, each one with a real parameter. This general set holds only four con�ning boundary conditions
and many not con�ning boundary conditions. Speci�cally, because the equation that models the Majorana particle in
the Dirac representation in the presence of the most general Lorentz potential (that, in this case, can only be a scalar
potential) [Eq. (92)] is an equation for a single component wave function, i.e., for the upper component of the Dirac
wave function ϕ (for example), we were able to write the most general set of boundary conditions to this equation, of
course only in terms of ϕ [Eq. (93)]. In particular, the con�ning boundary conditions have the form f(a) = g(b) = 0,
where f and g are precisely the functions Re(ϕ) and Im(ϕ). The latter is a nice result because the entire Dirac wave

function, ψ = [ϕ χ ]
T
, does not support the Dirichlet boundary condition at the ends of a one-dimensional box [4].
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It is very interesting to note that the four con�ning boundary conditions for the Majorana particle are precisely the
four boundary conditions that mathematically can arise from the general linear boundary condition used in the MIT
bag model. Certainly, in the modeling of the Majorana particle with the latter boundary conditions, the Majorana
condition must also be obeyed. The existence of this relation between the con�ning boundary conditions for the
Majorana particle and those of the MIT bag model for the Dirac particle was, in some way, unexpected.
Although nobody knows if there are elementary particles that are Majorana fermions, the con�nement of a di�erent

class of Majorana fermions in a �nite region can be found in solid-state physics, for example, in certain quantum wires
and topological superconductors [9, 24, 25]. In these systems, described in the formalism of second quantization,
Majorana fermions have generally emerged as (non-fundamental) quasiparticles, which are their own antiparticles
(holes), but the statistics of these objects is not fermionic but non-abelian [26]. We hope that our results, even when
they were obtained within the formalism of �rst quantization, will �nd some concrete application in these attractive
and also accessible systems. For example, it would be interesting to know if only the con�ning boundary conditions
that we have found can actually be realized.
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