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Abstract

An alternative approach to the general problem of factorization of the Schrödinger Hamiltonian operator, in the framework
of supersymmetric quantum mechanics (SUSY QM), is presented. We express the factorization of the partner Hamiltonians
H1 ↔ H2 in terms of the probability density and current for the ground state eigenfunction ofH1. This directly implies that the
involved operators in the factorization be complex. However, beingH1 a real operator (self-adjoint) its partnerH2 is in general
a complex operator. For a vanishing probability current, we recover the results of the standard SUSY QM. We consider the
model problem of a free particle in a one-dimensional box with a non-standard PT-symmetric boundary condition from which
a complex PT-symmetric partner Hamiltonian with real spectrum is obtained. 2002 Published by Elsevier Science B.V.

PACS: 03.65; 11.30.P
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1. Introduction

One of the methods used for finding new ex-
actly solvable potentials is the so-called factorization
method, introduced by Schrödinger [1] and later ex-
tended by Infeld and Hull [2]. This method is par-
ticularly useful to discover different potentials with
equivalent energy spectra in one-dimensional quan-
tum mechanics, being this method a special case of
an old one developed by Darboux [3,4]. The factoriza-
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tion method provided a motivation for studying super-
symmetric quantum mechanics (SUSY QM) [5]. In-
deed, the techniques of supersymmetry are essentially
equivalent to the factorization method of the Hamil-
tonian [6,7]. Several aspects have been studied within
SUSY QM [8–19] and general articles and reviews on
SUSY QM have been written [20–22] (see also the ref-
erences therein). Likewise, various authors have stud-
ied several extensions of simple and familiar potentials
[23–25], although the supersymmetric version of the
standard model problem of a non-relativistic particle
in an infinite square well (one-dimensional box), has
been marginally studied [6,9,13,17,22]. In fact, only
the standard Dirichlet boundary condition has been
considered in the literature.
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In this Letter we present an alternative general ap-
proach to the problem of factorization of a real (self-
adjoint) partner Hamiltonian operatorH1. The eigen-
functions of this operator are supposed to be com-
plex. The differential operatorH1 is written in terms
of the probability density and current for its ground-
state eigenfunction. This implies that the involved op-
erators in the factorization be also complex. Finally, in
spite of beingH1 a real operator, its partnerH2 might
be complex because its associated potentialV2(x) is
in general complex. Certainly, the standard approach
of SUSY QM does not consider complex potentials,
although various attempts in this direction have been
made already [26,27], some of them in the context of
the so-called PT-symmetric quantum mechanics [28].

Our results provide a new physical approach, with
local observable quantities, to the general SUSY com-
plexification procedure (recently studied by Andri-
anov et al. [26] and Bagchi, Mallik et al. [28]) with
ImV1(x)= 0 andV2(x) complex. For a free particle in
a one-dimensional box whereV1(x) = const, depend-
ing on the particular boundary condition, there exist
real as well as complex eigenfunctions, being our ap-
proach especially useful in this last case. We examine
a non-standard example of boundary condition for this
system. However, it is worth noting that our princi-
pal results can also be applied to any one-dimensional
self-adjoint Schrödinger HamiltonianH1 with com-
plex eigenfunctions.

2. Factorization method

In this section we present our approach to the
problem of factorization of a real (self-adjoint) partner
Hamiltonian operator, sayH1. Let us defineH1 on the
Hilbert spaceH of square integrable functions on a
configuration spaceΩ

(1)
(
H1ψ

(1))(x) =
(

− h̄2

2m

d2

dx2
+ V1(x)

)
ψ(1)(x).

This operator is unbounded and its domainD(H1) is
the set of functionsψ(1)(x) for which ψ(1)(x) ∈ H

and (H1ψ
(1))(x) ∈ H , i.e., ‖ψ(1)‖ < ∞ and

‖H1ψ
(1)‖ < ∞, with the usual definition of the norm

(alsoψ(1)(x) and its derivative are absolutely contin-
uous functions).

For a particle in a one-dimensional boxΩ =
[0,L] and additionallyψ(1)(x) must satisfy one of the
following boundary conditions [29–31](
ψ(1)(L) − iλ

(
ψ(1)

)′
(L)

ψ(1)(0)+ iλ
(
ψ(1)

)′
(0)

)

(2)= U

(
ψ(1)(L)+ iλ

(
ψ(1)

)′
(L)

ψ(1)(0)− iλ
(
ψ(1)

)′
(0)

)
.

The primes mean differentiation with respect tox.
The parameterλ is inserted for dimensional reasons
and the matrixU belongs toU(2). The potential inside
the boxV1(x) is real and bounded from below. The
unitary matrixU may be written as

U =
(

eiµeiτ cosθ eiµeiγ sinθ
eiµe−iγ sinθ −eiµe−iτ cosθ

)
,

with 0 � θ < π , 0 � µ,τ, γ < 2π . It can be shown
that for every wavefunctionψ(1)(x) ∈ D(H1), the
current density

(3)j (1)(x)= h̄

m
Im

(
ψ(1)∗ d(ψ(1))

dx

)
,

satisfiesj (1)(0) = j (1)(L). Whenj (1)(0) = j (1)(L) =
0, we have a “free” particle in a box, i.e., in the box, but
not confined at all to the box. Ifj (1)(0) = j (1)(L) = 0,
we have a confined particle in a box [32,33].

We assumeH1 has eigenvaluesE(1)
n and eigenfunc-

tionsψ(1)
n (x) with n = 0,1,2, . . . , which are explicitly

known. The ground-state eigenfunction isψ
(1)
0 (x) and

its corresponding energy isE(1)
0 ≡ 0, consequently

from Eq. (1) we write

(4)

(
H1ψ

(1)
0

)
(x)=

(
− h̄2

2m

d2

dx2 + V1(x)

)
ψ

(1)
0 (x) = 0,

then

(5)V1(x) = h̄2

2m

(ψ
(1)
0 (x))′′

ψ
(1)
0 (x)

.

This potential must be real if one wants to main-
tain the self-adjointness ofH1, however, the eigen-
functionψ

(1)
0 (x) is not always real, for example, the

ground-state eigenfunctions associated to periodic and
antiperiodic boundary conditions are complex [32,34].
On the other hand, for a free particle in a box, confined
or not, the potentialV1(x) is a constant.
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Let us consider the polar form of the complex
eigenfunctionψ(1)

0 (x)

(6)ψ
(1)
0 (x) = R0 exp

(
i
S0

h̄

)
,

whereR0 = R0(x) andS0 = S0(x) are real functions.
The probability density|ψ(1)

0 (x)|2 and the probability
current

j
(1)
0 (x) = h̄

m
Im

(
ψ

(1)∗
0

d(ψ
(1)
0 )

dx

)
,

for the ground-state eigenfunction are given by

(7)
∣∣ψ(1)

0 (x)
∣∣2 = R2

0, j
(1)
0 (x) = 1

m
R2

0(S0)
′.

Let us insert into Eq. (5) the polar form ofψ(1)
0 (x),

then the real and imaginary parts ofV1(x) are

(8)Re
[
V1(x)

] = h̄2

2m

[
(R0)

′′

R0
− 1

h̄2

(
(S0)

′)2
]
,

and

Im
[
V1(x)

] = h̄2

2m

[
2

h̄

(R0)
′

R0
(S0)

′ + 1

h̄
(S0)

′′
]

(9)= h̄

2m

1

R2
0

[
R2

0(S0)
′]′,

using one of the relations (7) we obtain

(10)Im
[
V1(x)

] = h̄

2

(j
(1)
0 (x))′

R2
0(x)

.

As is well-known [35], if ψ(1)
0 (x) satisfies the

Schrödinger eigenvalue equation with a real potential
V1(x), then the probability currentj0(x) is constant

(11)j
(1)
0 (x) ≡ j0 = const,

therefore

(12)Im
[
V1(x)

] = 0.

Then,V1(x) is real, consistently with the selfadjoint-
ness ofH1

(13)V1(x) = h̄2

2m

(R0)
′′(x)

R0(x)
− m

2

j2
0

R4
0(x)

.

More interestingly, physically the potentialV1(x)

depends on the Bohm’s quantum potentialQ0 =
− h̄2

2m
1
R0

d2R0
dx2 and Bohmian velocityv0(x) = j0/R

2
0(x)

calculated forψ(1)
0 (x) [30,36]:

(14)V1(x) = −Q0(x)− m

2
v2

0(x).

This equation takes also the suggestive formm
2 v

2
0(x)+

V1(x)+Q0(x) = 0, sinceE(1)
0 = 0 (indeed, this result

is provided by the quantum Hamilton–Jacobi equation,
e.g., see Eq. (3) in [32]). So, given the probability
current and density corresponding to the ground-state
eigenfunction, we may know the potential, up to a
constant. Clearly, for a confined particle in a box
j0 = 0, soV1(x) is just Bohm’s quantum potential

(15)V1(x) = −Q0(x).

The HamiltonianH1 defined in Eq. (1) is subse-
quently given by

(
H1ψ

(1))(x)= h̄2

2m

(
− d2

dx2 + (R0)
′′(x)

R0(x)

(16)− m2j2
0

h̄2

1

R4
0(x)

)
ψ(1)(x),

which can be factorized as

(17)
(
H1ψ

(1))(x)= b(±)a(±)ψ
(1)(x),

where we have defined the following linear differential
operators

a(±) ≡ h̄√
2m

(
d

dx
− (R0)

′(x)
R0(x)

± i
mj0

h̄

1

R2
0(x)

)
,

(18)

b(±) ≡ h̄√
2m

(
− d

dx
− (R0)

′(x)
R0(x)

± i
mj0

h̄

1

R2
0(x)

)
.

So, we have two possible factorizations forH1: H1 =
b(+)a(+) = b(−)a(−). If the typical casej0 = 0 is
considered, one hasa(+) = a(−) andb(+) = b(−).

A new pair of partner HamiltoniansH2 can be
constructed, that is

(19)
(
H2ψ

(2))(x)≡ a(±)b(±)ψ
(2)(x),

whereψ(2)(x) denote the complex eigenfunctions of
eachH2. We can write

(20)
(
H2ψ

(2))(x)=
(

− h̄2

2m

d2

dx2 + V2(x)

)
ψ(2)(x),
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where the pair of complex potentialsV2(x) are

(V2)(±)(x)= − h̄2

2m

(R0)
′′(x)

R0(x)
+ h̄2

m

((R0)
′)2(x)

R2
0(x)

(21)− m

2

j2
0

R4
0(x)

∓ i2h̄j0
(R0)

′(x)
R3

0(x)
.

Clearly,(V2)(±)(x) are complex potentials whenj0 =
0 and (R0)

′(x) = 0, that is, for a non-confined par-
ticle in a box with a non-trivial complex ground-
state eigenfunction. Consequently, beingH2 non-
Hermitian is obviously a non-self-adjoint operator. On
the other hand, whenj0 = 0 (and, for example, on
the real lineΩ = R), one does not expect that the
set of statesψ(2)(x) always satisfy‖ψ(2)‖ < ∞ and
‖H2ψ

(2)‖ < ∞.
The potentialsV1(x) and (V2)(±)(x) may also be

written as

V1(x) = w2
(±)(x)− h̄√

2m
(w(±))

′(x),

(22)(V2)(±)(x) = w2
(±)(x)+ h̄√

2m
(w(±))

′(x),

where

(23)w(±)(x) ≡ h̄√
2m

(
− (R0)

′(x)
R0(x)

± i
mj0

h̄

1

R2
0(x)

)
,

is a pair of “superpotentials”. Note thatV1(x) does
not depend on the chosen superpotential (w(+) or
w(−)). Moreover, whenj0 = 0 one has the standard
casew(±)(x) ≡ w(x). Clearly, the Eq. (22) are Ricatti
type equations. It is worth noting that given the
superpotentialsw(±)(x), the functionR0(x) may be
indistinctly obtained from the real and imaginary parts
of w(±)(x), in which case we obtain the expression

C exp

(√
2m

h̄

x∫
2 Rew(±)

(
x̃
)
dx̃

)

(24)= ±
√

2m

mj0
Imw(±)(x),

where C is a constant andj0 = 0. An analogous
relation has been recently mentioned (see Cannata et
al. [28]). Within our approach to the problem, this
relation naturally emerges.

In the case of standard and unbroken one-dimen-
sional SUSY QM, the ground state of the Hamiltonian
H1 = b(±)a(±): ψ

(1)
0 (x), which is normalizable, is also

annihilated by the operatorsa(±). When j0 = 0, the

annihilation ofψ(1)
0 (x) is automatically ensured by the

relation

(25)a(−)ψ
(1)
0 (x)= 0,

which follows from (6), (7) and (18). However, from
these same relations we have

(26)a(+)ψ
(1)
0 (x) = 0.

In this Letter we will only consider the operator
H1 = b(−)a(−) and therefore the lower sign in the
expressions (17)–(20) and (21)–(24). Although, when
j0 = 0 one hasa(+) = a(−) and b(+) = b(−). With
the validity of relation (25), the absence of any zero
energy state in the spectrum ofH2 = a(−)b(−) is
expressed, in general, by the relationb(−)ψ

(2)(x) = 0.
SinceH1 = b(−)a(−) andH2 = a(−)b(−) are inter-

twined by the operatora(−): H2a(−) = a(−)H1, the
eigenfunctions ofH2, as well as their energy eigen-
values, are obtained from those ofH1 by using

ψ(2)
n (x)= a(−)ψ

(1)
n+1(x),

(27)E(2)
n = E

(1)
n+1, n = 0,1,2, . . . ,

The solutionsa(−)ψ
(1)
n (x) belong to the domain of the

respective partner Hamiltonian operatorH2 with their
respective boundary conditions. Clearly, the boundary
conditions verified by each eigenfunctionψ(2)

n (x),
are not necessarily satisfied by the eigenfunctions
ψ

(1)
n (x). Moreover, whenj0 = 0 andR0(x) = 0 inside

the box, the operatora(−) does not generate a state of
infinite norm because

‖a(−)ψ‖2 ∝
(
ψ∗ dψ

dx
− R′

0

R0
ψ∗ψ

)∣∣∣∣
L

0
+ 〈H1〉ψ .

On the other hand, the (unnormalized) eigenfunc-
tions of H1 = b(−)a(−) are obtained from those of
H2 = a(−)b(−), with the same eigenvalue, by using

ψ
(1)
n+1(x)= b(−)ψ

(2)
n (x), with n = 0,1,2, . . . .

FromH2a(−) = a(−)H1 one infers thatb(−) inter-
twines in the other direction sinceH1b(−) = b(−)H2,
moreover if j0 = 0 the formal adjoint ofb(−) [37]
does not coincide witha(−), in fact b+

(−)
= a(+), nev-

ertheless,H1b(−) = b(−)H2 is equal toH1(a
∗
(−))

+ =
(a∗

(−))
+H2, wherea∗

(−) represents the formal complex
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conjugate ofa(−). Note that this last relation is ob-
tained fromH2a(−) = a(−)H1 taking its complex con-
jugation and then its formal adjoint (it must be recalled
thatH1 is real) but, in general,H2 is complex.

Finally, it is worth pointing out that ifR0(x) has
a node thenw(−) has singularities (for a particle in

a box this occurs, for example, whenψ(1)
0 (x) satis-

fies the Neumann boundary condition(ψ(1))′(0) =
(ψ(1))′(L) = 0, in fact,ψ(1)

0 (x) ∼ cos(πx/L) has a
node inx = L/2). In this case the operatora(−) maps

an eigenfunctionψ(1)
n (x) belonging toD(H1) out of

the Hilbert space. In this case, as is well-known, the
familiar “degeneracy” between the excited states of
the partner HamiltoniansH1 and H2, with regular
states, is only partially exhibited, see, for example,
Refs. [17,22].

3. SUSY QM in a box: a non-standard exactly
solvable example

In this section we consider a non-standard example
which illustrates our approach to the factorization
of the self-adjoint partner HamiltonianH1 in a box.
In this example we have a complex ground state
eigenfunction withj0 = 0 and R0(x) = const (see
expression (21)), so, a complex partner potentialV2(x)

with real spectrum is obtained.
By makingµ = γ = θ = π/2 in (2), the following

boundary condition is obtained

λ
(
ψ(1))′(0)= −i

(
ψ(1))(L) = 0,

(28)λ
(
ψ(1))′(L) = −i

(
ψ(1))(0) = 0.

This is an example of a non-confined boundary con-
dition (which can also be obtained in Carreau et al.
[38] by making in their parametersβ = γ = 1,ρ = −1
and θ = (s + 1

2)π , s = 0,2,4, . . . , or in da Luz and
Cheng [39] by imposingβ0 = βL = 1, ρ = −1 and
θ = (s + 1

2)π , s = 0,2,4, . . . , with their correspond-
ing eigenfunctions and energy eigenvalues).

Let V1(x) be the constant potential inside the box

(29)

V1(x) = V (x)− h̄2π2

2mL2 , V (x)= 0, 0< x <L.

The HamiltonianH1 is invariant under the com-
posed symmetry transformation PT. That is,(
H1 PT ψ(1))(x) = (

PT H1ψ
(1))(x),

but(
PT ψ(1))(x) = (

ψ(1))∗
(L− x),

must satisfy the boundary condition (29). Making use
of this last relation and also of
(
PT ψ(1))′(x)= d

dx

(
ψ(1))∗

(L− x)

= − d

dx̃

(
ψ(1))∗(x̃)

∣∣∣∣
x̃=L−x

,

this invariance may be easily shown.
The complex normalized eigenfunctions ofH1 in

0 � x � L and the corresponding energy eigenvalues
are

ψ(1)
n (x)= 1√

(1+ c2
n)L

(
eiknx + cne

−iknx
)
,

(30)E(1)
n = n(n + 2)

h̄2π2

2mL2
, n = 0,1,2, . . . ,

wherecn = λkn+(−1)n+1

λkn−(−1)n+1 andkn = (n+ 1)π/L.
The square root of the probability density as well as

the probability current for the ground state are given
by

(31)

R0(x) = 1√
L

√
1+ α cos(2k0x), j0 = πh̄

mL2β,

wherek0 = π/L,α ≡ λ2k2
0−1

λ2k2
0+1

andβ ≡ 2λk0
λ2k2

0+1
.

From (21), the real and imaginary parts of
(V2)(−)(x)≡ V2(x) are

Re
[
V2(x)

]

= π2h̄2

2mL2

(32)

× [α2 sin2(2k0x)+ 2α2 − β2 + 2α cos(2k0x)]
[1+ α cos(2k0x)]2 ,

(33)Im
[
V2(x)

] = −2
π2h̄2

mL2

αβ sin(2k0x)

[1+ α cos(2k0x)]2 .
Here, PT-invariance of the potentialV2(x) means

V2(x) = V ∗
2 (L − x), for x ∈ [0,L]. In fact, the po-

tentialV2(x) is invariant under the PT-transformation
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(and therefore the corresponding partner Hamiltonian
H2 in (20) has this symmetry, as well asH1). Note
that (ReV2)(x) = (ReV2)

∗(L − x) and(ImV2)(x) =
−(ImV2)

∗(L − x). Moreover, the real and imaginary
parts ofV2(x) do not have singularities.

The (unnormalized) complex eigenfunctions ofH2
are obtained from (27) and (30)

ψ(2)
n (x)=

{
h̄√
2m

d

dx
+w(x)

}
ψ

(1)
n+1(x)

(34)

∝
{

d

dx
+ k0

[α sin(2k0x)− iβ]
[1+ α cos(2k0x)]

}
ψ

(1)
n+1(x),

and the corresponding energy eigenvalues are obtained
from (27).

It can be checked that the eigenfunctionsψ
(2)
n (x)

of H2 are also eigenfunctions ofPT. For exam-
ple, the first two eigenfunctions verify the relations
(PT ψ

(2)
0 )(x) = −ψ

(2)
0 (x) and(PT ψ

(2)
1 )(x) = ψ

(2)
1 (x)

(this is indeed so for all higher integer values ofn).
Therefore, the PT-symmetry ofH2 is unbroken assur-
ing also the reality of the spectrum [40].

4. Conclusions

We have shown a different general approach to
the problem of factorization of a real (self-adjoint)
partner Hamiltonian operatorH1, which is factorized
in terms of the probability density and current for
its ground-state. In spite of beingH1 a real operator,
its partnerH2 is a complex operator (but with a real
spectrum) because its partner potentialV2(x) may be
complex. So, isospectrality between a real potential
(V1(x)) and a complex one (V2(x)), may be realized.
We have found an exactly solvable complex potential
in a box, which has exactly the same energy levels

thanV1(x) = − h̄2π2

2mL2 , except for the ground state. So,
a “free particle” may be in a partnership relation with
a particle in a complex non-constant potential.

We believe that our approach, which connects the
factorization method with local observables, may be
useful in all cases where one of the Hamiltonians is
self-adjoint and the other is complex.

In a future detailed publication, new aspects about
PT-symmetry with new consequences of our approach,
as well as the study of SUSY QM for a one-dimensio-

nal Schrödinger particle in a box with different stan-
dard and non-standard boundary conditions, will be
considered.
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