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The problem of a nonrelativistic quantum particle moving on a real line
with the most general point interaction at a single point can be treated in two
equivalent modes: (i) by considering an alternative system without a singular
potential but excluding the point, in which case the interaction is exclusively
encoded in proper boundary conditions, and (ii) by explicitly considering a
singular potential written in terms of the Dirac delta and derivatives d/dz
positioned properly. How can this be possible? The aim of this seminar is to
discuss these two approaches.
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What is a point interaction?

Bl Answer

J By a [point] interaction we mean an idealized localized singular
interaction with zero range occurring at a point in a region.
However, this kind of interaction can also be described by a
free system in the same region with the singular point excluded
(a hole or a single defect or an obstacle), in which case the
interaction is encoded in boundary conditions rather than in a
formal singular Hamiltonian operator.

B [Point = contact = zero-range = delta] interaction

Point interactions can be considered as a good approximation
of highly localized real (two-body) interactions or potentials

B Quantum systems with point interactions have been under an
intensive investigation in the recent years, both theoretically,
numerically and experimentally

M In this seminar, we will only consider Schrodinger Hamiltonians
in one dlmensmn and the singular interaction will be located at
2 =0. This is the simplest case but it has a very rich structure



B A bit of history

B R. De L. Kronig and W. G. Penney, “Quantum mechanics of
electrons in crystal lattices”, Proc. Roy. Soc. (London) 130A,

499-513 (1931)

This paper presented the first relevant model in quantum mechanics
based on point interactions. Using this model, Kronig and Penney
obtained the band structure of the metals

B H. Bethe and R. Peierls, “Quantum theory of the diplon™, Proc.
Roy. Soc. (London) 148A, 146-156 (1935); L. H. Thomas,
“The interaction between a neutron and a proton and the struc-
ture of H3”, Phys. Rev. 47, 903-909 (1935).

Bethe-Peierls and Thomas used point interactions as theoretical models
to solve the neutron—proton scattering in the approximation of very
short interaction range

B E. Fermi, “Sul moto dei neutroni nelle sostanze idrogenate”,
Ricerca Scientifica 7, 13-52, (1936).

The Bethe-Peierls and Thomas results were developed by Fermi with
the introduction of the so-called “delta pseudo-potential” (very com-

mon in nuclear physics)



B F. A. Berezin y L. D. Faddeev, “A remark on Schrodinger’s
equation with a singular potential’, Soviet Math. Dokl. 2,
372-375 (1961)

The work of Berezin and Faddeev was the first rigorous analysis of a
3D two-particle system with point interaction

B S. Albeverio, F. Gesztesy, R. Hgegh-Krohn and H. Holden,
“Solvable Models in Quantum Mechanics”, (Springer, New
York, 1988); M. Carreau, “Four-parameter point-interaction in
1D quantum systems”, J. Math. Gen. 26, 427-432 (1993);
P. Kurasov, “Distribution theory for discontinuous test func-
tions and differential operators with generalized coefficients”,
J. Math. Anal. Appl. 201, 297-323 (1996); S. Albeverio, L.
Dabrowski and P. Kurasov, “Symmetries of Schrodinger Oper-
ators with Point Interactions”, Lett. Math. Phys. 45, 33-47
(1998); S. Albeverio and P. Kurasov, “Singular Pertubations of
Differential Operators’, (University Press, Cambridge, 2000).

The works of Albeverio, Kurasov, Gesztesy, Dabrowski, Carreau et al,
in the 1980s and 1990s, produced a significant number of new results.
Since then, the topic has remained very active and models using point
interactions are today under active theoretical and experimental inves-
tigation



Point interactions as boundary conditions (BCs)

B Hamiltonian operator in R — {0} (=R \ {0})
h* d?

h=——
2m da?

Bl Self-adjoint on D(h) (= D(hf)) [D(h) is the domain of h]
o V(0+) — AV (0+) | A | W(0+) +iAV'(0+) |
Ve Db - { [\IJ(O—)Jri)\\If’(O—)] =v [xp(@-) —i)\\If’(O—)] }
BV (0L) = (1€1_r>r(1) U0 xe), V(0L) = (1€1_r>r(1) V(0 £ e

B )\ € R is a parameter (inserted for dimensional reasons)
Bl U is 2 unitary matrix = four real parameters

2 . mo—img —m2—1m1
U=e . .
Xp(lgb) [THQ—lml mo + 1Ms3 ]

W ¢e 0]
By eR (A = 0,1, 2, 3), (m0)2 + (m1)2 + (m2)2 + (m3)2 =1

' For example, use von Neumann's theory of self-adjoint extensions



B T he most general family of BCs can be written in distinct ways

¥ e D) :{:[AW%0£%—A@KO—)]::g[ U(0+) + W(0—) ]}

T(04) — T(0—) AV/(04) + AW'(0—)
o 1 [ —myg + cos(¢p) —mg —imy ]
o my + SlIl(gb) ms — 1My —mgy — COS(¢)

B S eR, Sy eR, Sy =-57
B Each example of BC encodes a different kind of wall at z =0

Bl (2) The Dirac delta interaction

L)L
[mo = — cos(@), mu = sin(¢), ma = ms = 0]

B (b) The first derivative of the Dirac delta interaction

wion] = |5 ] [

AV (0+) 0 =
[mo = Mo = 0= ((1 —mg)/ml) :ml/(1+m3), qb:ﬂ'/Q]

mi



B (c) The quasi-periodic interaction

) e | s}

[m0:m3:O=> (m1)2+(m2)2:1, ¢=7T/2]

Bl (d) The so-called “delta-prime” interaction

wion | = [o ] i),

[0 = cos(¢), my = sin(¢), ma =mz = 0]
B (e¢) The Dirichlet BC
U(0+) = U(0—) = 0
[mo=+1, me=m3=0=>m; =0, ¢ =7
Bl (f) The Neumann BC
V(0+) = W' (0—) =0

[mo=+1, me=m3=0=m; =0, ¢ =0]



Point interactions as singular potentials

I (Heuristic) Hamiltonian operator in R

. B2 Q2 .
.
2mdx? +Viz)

B A plausible general singular potential operator
V(CIZ) — CL<5, ) >5<£E> + b<5/7 ) >5(£C) + C<57 ) >5/<LE) + d<5/7 ) >5/<CIZ’>

B a, b, ¢, and d are complex numbers

B (F,V) (with FF'=¢ or ¢ = dj/dx) denotes the action F|V| of the
distribution F' on the test function ¥

W (6V) = [pdrd(z)V(z) = [pdzd(x)V(0) = ¥(0)
W (0 = fR dax §'(z)V(z) = fR dx ' (x)V(0) — fR dx 6(x)W'(0) = —0'(0)
B Formally self-adjoint, i.e., H = Hi =a€c€R,deR, ¢c=0b"

AN

] f’—symmetric, I.e., P-1HP = HAT a€R,deR, c=-b"



B General singular potential operator (four real parameters)
V(x) = gi(0, - )a(z) + (g2 — ig3) (0", - )8(2) + (g2 +igs)(0, - )0'(w) + ga(d', )0 ()
WgeR, B=1,234

Bl ' (z) can be written in various ways

V(o) = guda) + 9201) + iy 24,000) = 510) ) = 9 (9001 )

B Just to clarify

R Rk 02 ,
Hy = T Vi (2) = T2 + g10(z) = BFEPe) +9100,-)0(x) (A" =2m =1)



B H, should be defined only on a subset of £*(R), its domain
D(H,,). Why? Answer: Because ¥ € L2(R) (= ||U|° = (V,T) <
o), but also H, ¥ € £*(R). However, H, ¥ ¢ L*(R). In effect,

| Vi |17 = (Vi 0, V,, 0) Z/Rdx | Vo, 0 \2=9f/Rdx (3, 0)o(z)[*

= g7 | (0 | /dx5 = g7 | W(0 )|25(O) = 400 (unless W(0) = 0)

/\

B Thus, H,, is not a proper operator on L*(R)

B If there is a self-adjoint operator corresponding to ng it could

coincide with h (unperturbed operator) but restricted to act on
the set of functions that only satisfy the condition ¥(0) = 0. Well,
this operator is not self-adjoint (although it can be extended to
be self-adjoint).

B The one-parameter (self-adjoint) extension matches with
—d?/dz? and its domain is essentially W3 (R \ {0}) —the Sobolev
space of continuous functions with continuous bounded first
derivative, except for a finite jump at z =0 — and the boundary
condition V(0+) = ¥(0—) = ¥(0) and V'(0+) — ¥'(0—) = ¢;¥(0)

B The latter operator could be considered a natural definition for
H,, in the framework of the theory of self-adjoint operators



B Still clarifying

2 2 d d & ;
fly =~ V0) = oy (0007 ) =~ 540 )0 (1 =2m =1

B V,.(z) coincides with V, (z) with the replacement § — ¢, but V,,(z)
is not the first derivative of V, (z)

B Again, we start with U € £2(R) (= ||V]]® = (I, T) < o0), but
H, U ¢ L*(R). In effect (just formal manipulations!),

A . A : 2
H%ﬂW—U@W%N>L/M!%NP—%/¢HW )& (@)

2 V(0 |/dx\5’ W2 = g2 [W(0) \/dxé’ 'z

= g W' (0)]” (=0"(0)) = +o0 (unless ¥'(0) = 0)

AN

B Thus, H,, is not a proper operator on L*(R)

B In any case, the (self-adjoint) operator —d*/dz* (no singular po-
tential!) with the boundary condition V(0+) — V(0—) = —ags¥’'(0)
and V'(0+) = ¥/ (0—) = ¥'(0) could be considered a natural def-

inition for H,, in the framework of the theory of self-adjoint
operators



B Plausible choice for discontinuous test functions at z =0
Y(0+) + v(0-)
2
W'(0+) + W'(0—)
2

B ie., H (in a generalized sense) is determined by resorting to a

theory of distributions where the test functions V(z) and V'(z)
are discontinuous at the origin

(0, W) =U(0) =

(6", V) = =0 (0) = —

B There are situations in which the latter choices do not hold, for
example, if U(z) is defined by a differential equation in which

d(z) is involved, the relation (§,V) = V(0) = (V(0+)+ ¥(0—)) /2
does not hold

B Connecting singular potentials with boundary conditions

M0(2) = —a~ ' 0(2) + V(2)0(z) = BU(z)

V(@)¥(z) = g19(0)8(x) — (g2 — iga) ¥'(0)d(2) + (g2 + igs) W (0)d () — ga¥'(0)d' ()

W o =2m/k’



B By integrating the Schrodinger equation |
1 1
AU (04) — AV (0—) = §>\agl (U (0+) + W (0—)) — 5@(92 —ig3) (AU (04) + A¥'(0—))
B Hint: integrate HV = EV from —¢ to +¢ and take the limit € — 0

B By integrating the Schrodinger equation ||
1 lagy

U(04) — ¥(0—) = 5oz(gz +1ig3) (W (0+) + ¥(0—)) — B (AT (0+) + AT'(0—))

B Hint: integrate HV = EV first from z = —L (L > 0) to z, then
once more from —e to +¢ and take the limit ¢ — 0 again

B General boundary condition (four real parameters)

W<0+)—W(0—)] [ W(0+) + W(0—) ]

U(0+) —w0-) | M AU/ (04) 4+ AW/ (0—)

1 e
M= —a )\gl (92 0 193)
2 | 92 1t1g3 =\

L] My € R, My € R, My = _M1*2



B T he connection

1 —myg + cos(¢)
SaAgL = .
2 my + Sln(¢)
1 ms
—Y —
52 my + sin(¢)
1 —1mM9
—Y —
53 my + sin()

gs Mo+ cos(¢)

1
2N T iy + sin(o)

B Compare the general BC obtained by integrating the
Schrodinger equation with the most general family of BCs for h

B Every formal or heuristic (formally) self-adjoint operator H with
a singular potential V(z), coincides with a certain self-adjoint

operator h

In other words, any local potential that depends on the Dirac
delta and derivatives d/dz positioned conveniently, can be asso-
ciated with a boundary condition, and viceversa



B Examples

Bl (2) The Dirac delta interaction
V()= gi6(z) [= g1(0,-)d() ]
[mg = — cos(¢), my = sin(e), my = mz = 0] = [g1 = 2cot(9)/aX, g = g5 = g1 = 0]
Wio=1/2=g=0=V(z)=0]
W(¢— 71— =9 — —00=(e)]

B One single (even-parity) bound state

1 1 1
U(x) = \/—iagl exp (50491 |z \) , B = —Zoz(gl)2, g1 <0

U(0+) = ¥(0—) = (0)

U(0+) — U/(0—) = cg0(0) u/\\




B (b) The first derivative of the Dirac delta interaction

V(z)=g6 (@) [=g(0,)0(x) + g2(0,- )6 () ]
[mog=mo=0= ((1—mg3)/m1) =mi/(1+m3), » =7/2] = [go = 2m3/a(l + mq),
g1=93=9s=0]
W [ms=0= (m)?=1, and choosing m;=1= ¢, =0= V() =0]
W =0=(mg)*=1= g =2mg/a]

[(A) Mixed BCm3=1= g =2/a= V(0—)=V'(0+) =0]
[(B) Mixed BCm3=—-1= g, =—-2/a = V'(0—) = V(0+) =0]

B The trivial bound state (i.e. the discrete spectrum is empty)
U(z)=0, E=0

W(0+) = W(0—) = =2 (W(0+) + W(0-))




Bl (c) The quasi-periodic (or quasi-free) potential

Via) =ign (24.000) = 8(@)) (= ~igad)0(0) + a0, )5

[mo = M3 = 0 = (m1)2 + (m2)2 = 1, gb = 7'('/2] = [93 = —2777&/04(1 +m1),
g1=go=gs=0]
W(mi=1 m=0=V(z)=0= U(0+) = T0-), V(0+) = ¥'(0-)]

Wm— -1, m— 0= g3 > —o0,

= V(x) = ggl_i)rzloo 193 (2%5(3;) _ 5/(35)) o { 52813 z :\Iﬂ((%_j) |

] H is equivalent to a Schrodinger operator with a singular gauge
field at x =0 (just formal manipulations!)

- i (2000) - 01@)) = (~i; — 5<x>)2 — G6())P

B The trivial bound state (i.e. the discrete spectrum is empty)
U(z)=0, E=0



B (d) The so-called “delta-prime” interaction potential
Vo) = —gig (80)5) (= +0id')00)
[mo = cos(6), m1 = sin(@), my = mg = 0] = [g1 = 2 cot(@) /v, 1 = g = g5 = 0]
W[o=7/2=g=0=V(z)=0]
W (¢ — 0+ = gs — +oo = ()]
B One single (odd-parity) bound state

/| 2 2 4
V(r) =4/—segn(z)ex (——x), E=— : > ()
< ) gy & ( ) b 0494‘ | 043<94>2 94

W(0+) — U(0—) = —ag, ' (0)

V(04) = U'(0—) = ¥(0) &




Bl (e) The Dirichlet potential
Viz)= lim ¢d(z)

g1——00
[mg = +1, my = m3 =0(=m; =0), ¢ = 7| = [g1 = —4/alm; — —oq,
g2 =93 =gs=0]
B This potential is (heuristically) the square of the Dirac delta
V(z) = —6(0)8(x) = —6(2)8(x) = —(6(x))’

B The bound state could be calculated from the example (a)

, 1 1 L 5
Vo) = lim \/=jam e (Gamlal) = lim W) = (8e) oo

B V(z) looks like a highly localized state with £ = lim — ia(g)? = —oc

I
g1——00

B But, the distribution (or linear functional) associated with the

state U(x), VU[P], is precisely zero (® € L*(R) is the test function)

F0) = 0[] = (1, 8) = lim_ /_ " 42 U, (2)0(x) :glgrng,/_&igquc)) _

B The eigenfunction is really trivial, i.e., V(z) = 0 everywhere, and
it satisfies the Dirichlet BC, i.e., V(0+) = ¥(0—) = V¥(0) =0



B We have an impenetrable barrier at z =0

Bl (f) The Neumann potential

. d d

Viw) = lim =9:p (5@“)@)
[mg = 41, my = m3 = 0(= m; =0), ¢ = 0] = [g1 = 4\ am; — o0,
g1=g2 =93 =0]

B This potential is the “delta-prime’ interaction potential with
infinite strength

B Thus, the bound state could be calculated from the example

(d)
. | 2 2
U(x) = lim 4/—sgn(x)exp (—— |z |> =0
g4—00 | (xgy gy



E= lim —
s ad(ga)

B The eigenfunction is trivial, and it satisfies the Neumann BC,
i.e., V(0+) =V (0—)=v'(0)=0

B We have an impenetrable barrier at x =0

B Other results

B For every function V¥ € D(fl), the probability current density

) = S (0 ()W ()
satisfies
04 =50-) [ = =25 () Re((ona 4 im0 (0480

B This condition is equivalent to the hermiticity of the (self-
adjoint) operator h

W If my = my =0, then j(0+) = j(0—) = 0. In this case, x =0 is an
impenetrable barrier (otherwise it is penetrable)



B There are situations in which the following choice (my plausible
choice)

(6.) = w(o) = T 2O

does not hold (also for (', V) = —¥'(0) = — (V(0+) + ¥(0—)) /2)

B Example 1: The 1D Dirac equation with V(z) = ¢d(z)
) d S

U (z) = —i(fz@qf@) +mce, V() + V(2)U(z) = EV(z), U= [Z;]

Note that

d
—io,—WV U(x) ~
10, — () + gd(z)¥(x) = 0

This leads us to the correct boundary condition without using
the plausible choice

P1(0+) = exp(—ig)1(0—) , ¥2(0+) = exp(+ig)12(0—)

Integrating the Dirac equation and using the plausible choice, one
obtains an incorrect boundary condition

D1(04) = exp(—i0)h1 (0—) , a(0+) = exp(+if)i(0—), g = tan ™ (%)



B Example 2: The mean value of the force operator corresponding
to the step potential ¢(z) = V;,0(x) in the 1D KFG theory

<f>KFG = /Rd:c fQKFg(x7t> _ _/

Rdx %¢<I>QKpg<Zlf,t> = —VO/ dx 6(x)okra(x, t)

R
But the probability density gkpq(x,t) is not continuous at x =0

chg (Ui — wir) — gy

2
mec
Integrating the 1D KFG equation without using the plausible choice,
one obtains the correct result

<f>KFG = —Vb% | oxrg(0+,t) — oxra(0—,1) |

OKFG —

Therefore

| dwb@)onsate, ) = 5 [awa(0+,1) = axec0—,0)

a % | okra (04, 1) + okra(0—, 1) |

The integral of the Dirac delta with a discontinuous function is not
always equal to the average of the discontinuity of the function that
accompanies the Dirac delta in the integral



Bl Some concluding remarks

B Any point interaction at x = 0 characterized by a BC, can also
be characterized by an operator with a singular interaction at
x = 0. For example, the Dirichlet BC, the Neumann BC, and
the antiperiodic BC, three very common BCs, each have their
own associated singular potential

B The most general family of BCs we have presented here rep-
resents the whole family of BCs that a 1D Schrodinger wave
function could satisfy at a point

B The case treated here can be easily generalized to the case of
finite or infinite number of point interactions

B Point interactions can also be constructed by renormalizing the
strengths of the delta functions present in certain combinations

of these functions, and making the distances between them dis-
appear

B Even though nature seems to prefer self-adjoint operators, non-
self-adjoint point interactions have also been studied in the
framework of nonrelativistic quantum mechanics (for example,
PT-symmetric point interactions). It is now that non-self-
adjoint relativistic point interactions begin to be studied



Thanks!

Grazie!

iGracias!



