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What is a point interaction?

Answer

By a [point] interaction we mean an idealized localized singular
interaction with zero range occurring at a point in a region.
However, this kind of interaction can also be described by a
free system in the same region with the singular point excluded
(a hole or a single defect or an obstacle), in which case the
interaction is encoded in boundary conditions rather than in a
formal singular Hamiltonian operator.

[Point = contact = zero-range = delta] interaction

Point interactions can be considered as a good approximation
of highly localized real (two-body) interactions or potentials

Quantum systems with point interactions have been under an
intensive investigation in the recent years, both theoretically,
numerically and experimentally

In this seminar, we will only consider Schrödinger Hamiltonians
in one dimension, and the singular interaction will be located at
x = 0. This is the simplest case but it has a very rich structure



A bit of history

R. De L. Kronig and W. G. Penney, �Quantum mechanics of
electrons in crystal lattices�, Proc. Roy. Soc. (London) 130A,
499�513 (1931)

This paper presented the �rst relevant model in quantum mechanics
based on point interactions. Using this model, Kronig and Penney
obtained the band structure of the metals

H. Bethe and R. Peierls, �Quantum theory of the diplon�, Proc.
Roy. Soc. (London) 148A, 146�156 (1935); L. H. Thomas,
�The interaction between a neutron and a proton and the struc-
ture of H3�, Phys. Rev. 47, 903�909 (1935).

Bethe-Peierls and Thomas used point interactions as theoretical models
to solve the neutron�proton scattering in the approximation of very
short interaction range

E. Fermi, �Sul moto dei neutroni nelle sostanze idrogenate�,
Ricerca Scienti�ca 7, 13�52, (1936).

The Bethe-Peierls and Thomas results were developed by Fermi with
the introduction of the so-called �delta pseudo-potential� (very com-
mon in nuclear physics)
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F. A. Berezin y L. D. Faddeev, �A remark on Schrödinger's
equation with a singular potential�, Soviet Math. Dokl. 2,
372�375 (1961)

The work of Berezin and Faddeev was the �rst rigorous analysis of a
3D two-particle system with point interaction

S. Albeverio, F. Gesztesy, R. Høegh-Krohn and H. Holden,
�Solvable Models in Quantum Mechanics�, (Springer, New
York, 1988); M. Carreau, �Four-parameter point-interaction in
1D quantum systems�, J. Math. Gen. 26, 427-432 (1993);
P. Kurasov, �Distribution theory for discontinuous test func-
tions and di�erential operators with generalized coe�cients�,
J. Math. Anal. Appl. 201, 297-323 (1996); S. Albeverio, L.
Dabrowski and P. Kurasov, �Symmetries of Schrödinger Oper-
ators with Point Interactions�, Lett. Math. Phys. 45, 33-47
(1998); S. Albeverio and P. Kurasov, �Singular Pertubations of
Di�erential Operators�, (University Press, Cambridge, 2000).

The works of Albeverio, Kurasov, Gesztesy, Dabrowski, Carreau et al,
in the 1980s and 1990s, produced a signi�cant number of new results.
Since then, the topic has remained very active and models using point
interactions are today under active theoretical and experimental inves-
tigation



Point interactions as boundary conditions (BCs)

Hamiltonian operator in R− {0} (= R \ {0})

ĥ = − }2

2m

d2

dx2

Self-adjoint on D(ĥ) (= D(ĥ†)) [D(ĥ) is the domain of ĥ ]

Ψ ∈ D(ĥ) :

{ [
Ψ(0+)− iλΨ′(0+)
Ψ(0−) + iλΨ′(0−)

]
= Û

[
Ψ(0+) + iλΨ′(0+)
Ψ(0−)− iλΨ′(0−)

] }
1

Ψ(0±) = lim
ε→0

Ψ(0± ε), Ψ′(0±) = lim
ε→0

Ψ′(0± ε)
λ ∈ R is a parameter (inserted for dimensional reasons)
Û is a unitary matrix ⇒ four real parameters

Û = exp(iφ)

[
m0 − im3 −m2 − im1

m2 − im1 m0 + im3

]
φ ∈ [0, π]
mA ∈ R (A = 0, 1, 2, 3), (m0)

2 + (m1)
2 + (m2)

2 + (m3)
2 = 1

1 For example, use von Neumann's theory of self-adjoint extensions



The most general family of BCs can be written in distinct ways

Ψ ∈ D(ĥ) :

{ [
λΨ′(0+)− λΨ′(0−)

Ψ(0+)− Ψ(0−)

]
= Ŝ

[
Ψ(0+) + Ψ(0−)

λΨ′(0+) + λΨ′(0−)

] }
Ŝ =

1

m1 + sin(φ)

[
−m0 + cos(φ) −m3 − im2

m3 − im2 −m0 − cos(φ)

]
S11 ∈ R, S22 ∈ R, S21 = −S∗12

Each example of BC encodes a di�erent kind of wall at x = 0

(a) The Dirac delta interaction[
Ψ(0+)
λΨ′(0+)

]
=

[
1 0
−2m0

m1
1

] [
Ψ(0−)
λΨ′(0−)

]
[m0 = − cos(φ), m1 = sin(φ), m2 = m3 = 0 ]

(b) The �rst derivative of the Dirac delta interaction[
Ψ(0+)
λΨ′(0+)

]
=

[
1+m3
m1

0

0 1−m3
m1

] [
Ψ(0−)
λΨ′(0−)

]
[m0 = m2 = 0⇒ ((1−m3)/m1) = m1/(1 + m3), φ = π/2 ]



�

(c) The quasi-periodic interaction[
Ψ(0+)
λΨ′(0+)

]
=

[
m1 − im2 0

0 m1 − im2

] [
Ψ(0−)
λΨ′(0−)

]
[m0 = m3 = 0⇒ (m1)

2 + (m2)
2 = 1, φ = π/2 ]

(d) The so-called �delta-prime� interaction[
Ψ(0+)
λΨ′(0+)

]
=

[
1 −2m0

m1

0 1

] [
Ψ(0−)
λΨ′(0−)

]
[m0 = cos(φ), m1 = sin(φ), m2 = m3 = 0 ]

(e) The Dirichlet BC

Ψ(0+) = Ψ(0−) = 0

[m0 = +1, m2 = m3 = 0⇒ m1 = 0, φ = π ]

(f) The Neumann BC

Ψ′(0+) = Ψ′(0−) = 0

[m0 = +1, m2 = m3 = 0⇒ m1 = 0, φ = 0 ]



Point interactions as singular potentials

(Heuristic) Hamiltonian operator in R

Ĥ = − }2

2m

d2

dx2
+ V̂ (x)

�

A plausible general singular potential operator

V̂ (x) = a〈δ, · 〉δ(x) + b〈δ′, · 〉δ(x) + c〈δ, · 〉δ′(x) + d〈δ′, · 〉δ′(x)

�

a, b, c, and d are complex numbers

〈F,Ψ〉 (with F = δ or δ′ ≡ dδ/dx) denotes the action F [Ψ] of the
distribution F on the test function Ψ

〈δ,Ψ〉 =
�
R dx δ(x)Ψ(x) =

�
R dx δ(x)Ψ(0) = Ψ(0)

〈δ′,Ψ〉 =
�
R dx δ′(x)Ψ(x) =

�
R dx δ′(x)Ψ(0)−

�
R dx δ(x)Ψ′(0) = −Ψ′(0)

Formally self-adjoint, i.e., Ĥ = Ĥ† ⇒ a ∈ R, d ∈ R, c = b∗

P̂-symmetric, i.e., P̂−1Ĥ P̂ = Ĥ† ⇒ a ∈ R, d ∈ R, c = −b∗
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General singular potential operator (four real parameters)

V̂ (x) = g1〈δ, · 〉δ(x) + (g2 − ig3)〈δ′, · 〉δ(x) + (g2 + ig3)〈δ, · 〉δ′(x) + g4〈δ′, · 〉δ′(x)

gB ∈ R, B = 1, 2, 3, 4

V̂ (x) can be written in various ways

V̂ (x) = g1δ(x)− (g2 − ig3)δ(x)
d

dx
+ (g2 + ig3)

d

dx
δ(x)− g4

d

dx

(
δ(x)

d

dx

)
i.e.,

V̂ (x)� = g1δ(x)�− (g2− ig3)δ(x)
d

dx
�+ (g2 + ig3)

d

dx
( δ(x)� )− g4

d

dx

(
δ(x)

d

dx
�

)
Also

V̂ (x) = g1δ(x) + g2δ
′(x) + ig3

(
2

d

dx
δ(x)− δ′(x)

)
− g4

d

dx

(
δ(x)

d

dx

)
Just to clarify

Ĥg1 ≡ −
d2

dx2
+ V̂g1(x) = − d2

dx2
+ g1δ(x) = − d2

dx2
+ g1〈δ, · 〉δ(x) (~2 = 2m = 1)
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Ĥg1 should be de�ned only on a subset of L2(R), its domain

D(Ĥg1). Why? Answer: Because Ψ ∈ L2(R) (⇒ ‖Ψ‖2 ≡ 〈Ψ,Ψ〉 <
∞), but also Ĥg1Ψ ∈ L2(R). However, Ĥg1Ψ /∈ L2(R). In e�ect,

‖ V̂g1Ψ ‖
2≡ 〈V̂g1Ψ, V̂g1Ψ〉 =

�
R

dx | V̂g1Ψ |
2 = g21

�
R

dx |〈δ,Ψ〉δ(x)|2

= g21 |Ψ(0)|2
�
R

dx δ(x)δ(x) = g21 |Ψ(0)|2 δ(0) = +∞ (unless Ψ(0) = 0)

Thus, Ĥg1 is not a proper operator on L2(R)

If there is a self-adjoint operator corresponding to Ĥg1, it could

coincide with ĥ (unperturbed operator) but restricted to act on
the set of functions that only satisfy the condition Ψ(0) = 0. Well,
this operator is not self-adjoint (although it can be extended to
be self-adjoint).

The one-parameter (self-adjoint) extension matches with
−d2/dx2 and its domain is essentially W 2

2 (R \ {0}) �the Sobolev
space of continuous functions with continuous bounded �rst
derivative, except for a �nite jump at x = 0 � and the boundary
condition Ψ(0+) = Ψ(0−) ≡ Ψ(0) and Ψ′(0+)− Ψ′(0−) = g1Ψ(0)

The latter operator could be considered a natural de�nition for
Ĥg1 in the framework of the theory of self-adjoint operators
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Still clarifying

Ĥg4 ≡ −
d2

dx2
+V̂g4(x) = − d2

dx2
−g4

d

dx

(
δ(x)

d

dx

)
= − d2

dx2
+g4〈δ′, · 〉δ′(x) (~2 = 2m = 1)

V̂g4(x) coincides with V̂g1(x) with the replacement δ → δ′, but V̂g4(x)

is not the �rst derivative of V̂g1(x)

Again, we start with Ψ ∈ L2(R) (⇒ ‖Ψ‖2 ≡ 〈Ψ,Ψ〉 < ∞), but
Ĥg4Ψ /∈ L2(R). In e�ect (just formal manipulations!),

‖ V̂g4Ψ ‖
2≡ 〈V̂g4Ψ, V̂g4Ψ〉 =

�
R

dx | V̂g4Ψ |
2 = g24

�
R

dx |〈δ′,Ψ〉δ′(x)|2

= g24 |Ψ′(0)|2
�
R

dx |δ′(x)|2 = g24 |Ψ′(0)|2
�
R

dx δ′(x)δ′(x)

= g24 |Ψ′(0)|2 (−δ′′(0)) = +∞ (unless Ψ′(0) = 0)

Thus, Ĥg4 is not a proper operator on L2(R)

In any case, the (self-adjoint) operator −d2/dx2 (no singular po-
tential!) with the boundary condition Ψ(0+)− Ψ(0−) = −αg4Ψ′(0)
and Ψ′(0+) = Ψ′(0−) ≡ Ψ′(0) could be considered a natural def-
inition for Ĥg4 in the framework of the theory of self-adjoint
operators
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Plausible choice for discontinuous test functions at x = 0

〈δ,Ψ〉 = Ψ(0) ≡ Ψ(0+) + Ψ(0−)

2

〈δ′,Ψ〉 = −Ψ′(0) ≡ −Ψ′(0+) + Ψ′(0−)

2

i.e., Ĥ (in a generalized sense) is determined by resorting to a
theory of distributions where the test functions Ψ(x) and Ψ′(x)
are discontinuous at the origin

There are situations in which the latter choices do not hold, for
example, if Ψ(x) is de�ned by a di�erential equation in which
δ(x) is involved, the relation 〈δ,Ψ〉 = Ψ(0) = (Ψ(0+) + Ψ(0−)) /2
does not hold

Connecting singular potentials with boundary conditions

ĤΨ(x) = −α−1 d2

dx2
Ψ(x) + V̂ (x)Ψ(x) = EΨ(x)

V̂ (x)Ψ(x) = g1Ψ(0)δ(x)− (g2 − ig3)Ψ
′(0)δ(x) + (g2 + ig3)Ψ(0)δ′(x)− g4Ψ′(0)δ′(x)

α ≡ 2m/~2
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By integrating the Schrödinger equation I

λΨ′(0+)− λΨ′(0−) =
1

2
λαg1 (Ψ(0+) + Ψ(0−))− 1

2
α(g2− ig3) (λΨ′(0+) + λΨ′(0−))

Hint: integrate ĤΨ = EΨ from −ε to +ε and take the limit ε→ 0

By integrating the Schrödinger equation II

Ψ(0+)− Ψ(0−) =
1

2
α(g2 + ig3) (Ψ(0+) + Ψ(0−))− 1

2

αg4
λ

(λΨ′(0+) + λΨ′(0−))

Hint: integrate ĤΨ = EΨ �rst from x = −L (L > 0) to x, then
once more from −ε to +ε and take the limit ε→ 0 again

General boundary condition (four real parameters)[
λΨ′(0+)− λΨ′(0−)

Ψ(0+)− Ψ(0−)

]
= M̂

[
Ψ(0+) + Ψ(0−)

λΨ′(0+) + λΨ′(0−)

]
M̂ =

1

2
α

[
λg1 −(g2 − ig3)

g2 + ig3 −g4
λ

]
M11 ∈ R, M22 ∈ R, M21 = −M ∗

12
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The connection

1

2
αλg1 =

−m0 + cos(φ)

m1 + sin(φ)

1

2
αg2 =

m3

m1 + sin(φ)

1

2
αg3 =

−m2

m1 + sin(φ)

1

2
α
g4
λ

=
m0 + cos(φ)

m1 + sin(φ)

Compare the general BC obtained by integrating the
Schrödinger equation with the most general family of BCs for ĥ

Every formal or heuristic (formally) self-adjoint operator Ĥ with
a singular potential V̂ (x), coincides with a certain self-adjoint
operator ĥ

In other words, any local potential that depends on the Dirac
delta and derivatives d/dx positioned conveniently, can be asso-
ciated with a boundary condition, and viceversa
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Examples

(a) The Dirac delta interaction

V̂ (x) = g1δ(x) [ = g1〈δ, · 〉δ(x) ]

[m0 = − cos(φ), m1 = sin(φ), m2 = m3 = 0 ]⇒ [ g1 = 2 cot(φ)/αλ, g2 = g3 = g4 = 0 ]

[φ = π/2⇒ g1 = 0⇒ V̂ (x) = 0 ]

[φ→ π− ⇒ g1 → −∞⇒ (e) ]

One single (even-parity) bound state

Ψ(x) =

√
−1

2
αg1 exp

(
1

2
αg1 |x |

)
, E = −1

4
α(g1)

2, g1 < 0

Ψ(0+) = Ψ(0−) ≡ Ψ(0)

Ψ′(0+)− Ψ′(0−) = αg1Ψ(0)

��-
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(b) The �rst derivative of the Dirac delta interaction

V̂ (x) = g2 δ
′(x) [ = g2〈δ′, · 〉δ(x) + g2〈δ, · 〉δ′(x) ]

[m0 = m2 = 0 ⇒ ((1 −m3)/m1) = m1/(1 + m3), φ = π/2 ] ⇒ [ g2 = 2m3/α(1 + m1),
g1 = g3 = g4 = 0 ]

[m3 = 0⇒ (m1)
2 = 1, and choosing m1 = 1⇒ g2 = 0⇒ V̂ (x) = 0 ]

[m1 = 0⇒ (m3)
2 = 1⇒ g2 = 2m3/α ]

[ (A) Mixed BC m3 = 1⇒ g2 = 2/α⇒ Ψ(0−) = Ψ′(0+) = 0 ]
[ (B) Mixed BC m3 = −1⇒ g2 = −2/α⇒ Ψ′(0−) = Ψ(0+) = 0 ]

The trivial bound state (i.e. the discrete spectrum is empty)

Ψ(x) = 0, E = 0
��-

Ψ(0+)− Ψ(0−) =
αg2

2
(Ψ(0+) + Ψ(0−))

Ψ′(0+)− Ψ′(0−) = −αg2
2

(Ψ′(0+) + Ψ′(0−))

�
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(c) The quasi-periodic (or quasi-free) potential

V̂ (x) = ig3

(
2

d

dx
δ(x)− δ′(x)

)
[ = −ig3〈δ′, · 〉δ(x) + ig3〈δ, · 〉δ′(x) ]

[m0 = m3 = 0 ⇒ (m1)
2 + (m2)

2 = 1, φ = π/2 ] ⇒ [ g3 = −2m2/α(1 + m1),
g1 = g2 = g4 = 0 ]

[m1 = 1, m2 = 0⇒ V̂ (x) = 0⇒ Ψ(0+) = Ψ(0−), Ψ′(0+) = Ψ′(0−) ]

[m1 → −1, m2 → 0⇒ g3 → −∞,

⇒ V̂ (x) = lim
g3→−∞

ig3

(
2

d

dx
δ(x)− δ′(x)

)
⇔
{

Ψ(0+) = −Ψ(0−)
Ψ′(0+) = −Ψ′(0−)

]

Ĥ is equivalent to a Schrödinger operator with a singular gauge
�eld at x = 0 (just formal manipulations!)

Ĥ = − d2

dx2
+ ig3

(
2

d

dx
δ(x)− δ′(x)

)
=

(
−i

d

dx
− g3 δ(x)

)2

− g23(δ(x))2

The trivial bound state (i.e. the discrete spectrum is empty)

Ψ(x) = 0, E = 0
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(d) The so-called �delta-prime� interaction potential

V̂ (x) = −g4
d

dx

(
δ(x)

d

dx

)
[ = +g4〈δ′, · 〉δ′(x) ]

[m0 = cos(φ), m1 = sin(φ), m2 = m3 = 0 ]⇒ [ g4 = 2λ cot(φ)/α, g1 = g2 = g3 = 0 ]

[φ = π/2⇒ g4 = 0⇒ V̂ (x) = 0 ]

[φ→ 0+⇒ g4 → +∞⇒ (f) ]

One single (odd-parity) bound state

Ψ(x) =

√
2

αg4
sgn(x) exp

(
− 2

αg4
|x |
)
, E = − 4

α3(g4)2
, g4 > 0

Ψ(0+)− Ψ(0−) = −αg4Ψ′(0)

Ψ′(0+) = Ψ′(0−) ≡ Ψ′(0)

��-
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(e) The Dirichlet potential

V̂ (x) = lim
g1→−∞

g1δ(x)

[m0 = +1, m2 = m3 = 0 (⇒ m1 = 0), φ = π ] ⇒ [ g1 = −4/αλm1 → −∞,
g2 = g3 = g4 = 0 ]

This potential is (heuristically) the square of the Dirac delta

V̂ (x) = −δ(0)δ(x) = −δ(x)δ(x) = −(δ(x))2

The bound state could be calculated from the example (a)

Ψ(x) = lim
g1→−∞

√
−1

2
αg1 exp

(
1

2
αg1 |x |

)
≡ lim

g1→−∞
Ψg1(x) ⇒ (Ψ(x))2 = δ(x)

Ψ(x) looks like a highly localized state with E = lim
g1→−∞

− 1
4α(g1)

2 = −∞
But, the distribution (or linear functional) associated with the
state Ψ(x), Ψ[Φ], is precisely zero (Φ ∈ L2(R) is the test function)

F [Φ] = Ψ[Φ] = 〈Ψ,Φ〉 = lim
g1→−∞

� +∞

−∞
dxΨg1(x)Φ(x) = lim

g1→−∞
2

√
− 2

αg1
Φ(0) = 0

The eigenfunction is really trivial, i.e., Ψ(x) = 0 everywhere, and
it satis�es the Dirichlet BC, i.e., Ψ(0+) = Ψ(0−) ≡ Ψ(0) = 0
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We have an impenetrable barrier at x = 0

�

(f) The Neumann potential

V̂ (x) = lim
g4→∞

−g4
d

dx

(
δ(x)

d

dx

)
[m0 = +1, m2 = m3 = 0 (⇒ m1 = 0), φ = 0 ] ⇒ [ g4 = 4λ/αm1 → +∞,
g1 = g2 = g3 = 0 ]

This potential is the �delta-prime� interaction potential with
in�nite strength

Thus, the bound state could be calculated from the example
(d)

Ψ(x) = lim
g4→∞

√
2

αg4
sgn(x) exp

(
− 2

αg4
|x |
)

= 0



�

E = lim
g4→∞

− 4

α3(g4)2
= 0

The eigenfunction is trivial, and it satis�es the Neumann BC,
i.e., Ψ′(0+) = Ψ′(0−) ≡ Ψ′(0) = 0

We have an impenetrable barrier at x = 0

�

Other results

For every function Ψ ∈ D(ĥ), the probability current density

j(x) =
}
m

Im (Ψ∗(x)Ψ′(x))

satis�es

j(0+) = j(0−)

[
= − }

m

1

λ

(
1

m0 + cos(φ)

)
Re ((m2 + im1)Ψ

∗(0+)Ψ(0−))

]
This condition is equivalent to the hermiticity of the (self-

adjoint) operator ĥ

If m1 = m2 = 0, then j(0+) = j(0−) = 0. In this case, x = 0 is an
impenetrable barrier (otherwise it is penetrable)
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There are situations in which the following choice (my plausible
choice)

〈δ,Ψ〉 = Ψ(0) ≡ Ψ(0+) + Ψ(0−)

2

does not hold (also for 〈δ′,Ψ〉 = −Ψ′(0) = − (Ψ(0+) + Ψ(0−)) /2)

Example 1: The 1D Dirac equation with V̂ (x) = gδ(x)

ĤΨ(x) = −iσ̂z
d

dx
Ψ(x) + mc2σ̂xΨ(x) + V̂ (x)Ψ(x) = EΨ(x) , Ψ =

[
ψ1

ψ2

]
Note that

−iσ̂z
d

dx
Ψ(x) + gδ(x)Ψ(x) ≈ 0

This leads us to the correct boundary condition without using
the plausible choice

ψ1(0+) = exp(−ig)ψ1(0−) , ψ2(0+) = exp(+ig)ψ2(0−)

Integrating the Dirac equation and using the plausible choice, one
obtains an incorrect boundary condition

ψ1(0+) = exp(−iθ)ψ1(0−) , ψ2(0+) = exp(+iθ)ψ2(0−) ,
θ

2
= tan−1

(g
2

)
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Example 2: The mean value of the force operator corresponding
to the step potential φ(x) = V0 Θ(x) in the 1D KFG theory

〈f̂〉KFG =

�
R

dx f̂%KFG(x, t) = −
�
R

dx
d

dx
φ(x)%KFG(x, t) = −V0

�
R

dx δ(x)%KFG(x, t)

But the probability density %KFG(x, t) is not continuous at x = 0

%KFG =
i~

2mc2
(
Ψ∗Ψ̇− ΨΨ̇∗

)
− φ

mc2
Ψ∗Ψ

Integrating the 1D KFG equation without using the plausible choice,
one obtains the correct result

〈f̂〉KFG = −V0
1

2
[ %KFG(0+, t)− %KFG(0−, t) ]

Therefore �
R

dx δ(x)%KFG(x, t) =
1

2
[ %KFG(0+, t)− %KFG(0−, t) ]

6= 1

2
[ %KFG(0+, t) + %KFG(0−, t) ]

The integral of the Dirac delta with a discontinuous function is not
always equal to the average of the discontinuity of the function that
accompanies the Dirac delta in the integral



�

Some concluding remarks

Any point interaction at x = 0 characterized by a BC, can also
be characterized by an operator with a singular interaction at
x = 0. For example, the Dirichlet BC, the Neumann BC, and
the antiperiodic BC, three very common BCs, each have their
own associated singular potential

�

The most general family of BCs we have presented here rep-
resents the whole family of BCs that a 1D Schrödinger wave
function could satisfy at a point

�

The case treated here can be easily generalized to the case of
�nite or in�nite number of point interactions

�

Point interactions can also be constructed by renormalizing the
strengths of the delta functions present in certain combinations
of these functions, and making the distances between them dis-
appear

�

Even though nature seems to prefer self-adjoint operators, non-
self-adjoint point interactions have also been studied in the
framework of nonrelativistic quantum mechanics (for example,
PT-symmetric point interactions). It is now that non-self-
adjoint relativistic point interactions begin to be studied
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Thanks!

�

�

�

�

Grazie!

�

�

�

�

½Gracias!


