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ON QUANTUM MECHANICS

M. BORN AND P. JORDAN

The recently pubhshed theoretical approach of Helsenberg is here developed mto
a systema

e~ A 1 sa
recently published in this

Journal, which aimed at setting up a new kinematlcal and mechanical
formalism in conformity with the basic requirements of quantum

theory, appears to us of considerable potential significance. It repre-
sents an attemnt to render iustice to the new facts hv cvft- unD a

--.’ KSa bl et wihd waileL i jeoel aQv vl “y =

new and really suitable conceptual system instead of adaptlng the
customary conceptions in a more or less artificial and forced manner.
The physical reasoning which led Heisenberg to this development has
been so clearly described by him that any supplementary remarks
appear superfluous. But, as he himself indicates, in its formal, mathe-
matical aspects his approach is but in its initial stages. His hypotheses
have been applied only to simple examples without being fully carried
through to a generalized theory. Having been in an advantageous
Position to familiarize ourselves with his ideas throughout their
formative stages, we now strive (since his investigations have been

Edttor s note. This paper was published as Zs. f. Phys. 34 (1925) 858-888. Chapter
(PP 883-888) of the original paper is not reproduced here.
'w. Heisenberg, Zs. f. Phys. 33 (1925) 879.
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278 M. BORN AND P. JORDAN 13

concluded) to clarify the mathematically formal content of his ap-
proach and present some of our results here. These indicate that it jg
in fact possible, starting with the basic premises given by Heisenberg
to build up a closed mathematical theory of quantum mechanicg
which displays strikingly close analogies with classical mechanics, byt
at the same time preserves the characteristic features of quantum

phenomena.

In this we at first confine ourselves, like Heisenberg, to systems
haxrninog nme dooves nt fvoodnm Aand acciima thace +n he — fram a ~lacoimal
HaVvilig Une wogroee vl jrecunr alill asSSULLIT LItST WU v 11Uill a v1dadS>IiCd]

standpoint — periodic. We shall in the continuation of this publication
concern ourselves with the generalization of the mathematical theory
to systems having an arbitrary number of degrees of freedom, as also
to aperiodic motion. A noteworthy generalization of Heisenberg’s
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1onrelativistic mechanics nor to calculations involving C(artesian
Y. LK

systems of coordinates. The only restriction which we impose upon
the choice of coordinates is to base our considerations upon Jbration
coordinates, which in classical theory are periodic functions of time.

o
-
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—introduce the angle of rotation ¢, which becomes a linear function of

time. Heisenberg also proceeded thus in his treatment of the rotator;

however, it remains undecided whether the approach applied there

te iustified § ] tooint of .

mmre L TT Accnan . 4

he mathematical basis of Heisenberg’s
multiplication of quantum-theoretical quantities, which he derived
from an ingenious consideration of correspondence arguments. The
development of his formalism, which we give here, is based upon the
fact that this rule of multiplication is none other than the well-known
mathematical rule of matrix multiplication. The infinite square array
(with discrete or continuous indices) which appears at the start of the
next section, termed a matrix, is a representation of a physical quantity
which is given in classical theory as a function of time. The mathe-
matical method of treatment inherent in the new quantum mechanics
is thereby characterized through the employment of matrix analysts
in place of the usual number analysis.
Using this method, we have attempted to tackle some of the
simplest problems in mechanics and electrodynamics. A variationd}
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rinciple, derived from correspondence considerations, yields equations
of motion for the most general Hamilton function which are in closest
analogy with the classical canonical equations. The quantum con-
dition conjoined with one of the relations which proceed from the
equations of motion permits a simple matrix notation. With the aid
of this, one can prove the general validity of the law of conservation of
energy and the Bohr frequency relation in the sense conjectured by
Helsenberg this proof could not be carried through in its entirety by

T +tha cimnla mnlae whicrh h concidearad ‘Kfn ckn]l

1~ o
Lll.\.z DLIJ.LIJL\.« \.,Aa.u.l.yu.«o Yvilivil 11U QLvViloluvuluovua, wliall

later return in more detail to one of these examples in order to derive
a basis for consideration of the part played by the phases of the
partial vibrations in the new theory. We show finally that the basic
]aws of the electromagnetlc field in a vacuum can readllv be incorpo-
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measure for the transition probabilities.

We consider square infinite matrices,! which we shall denote by
heavy type to distinguish them from ordinary quantities which will

throughout be in light type
/a(00) a(01) a(02) ...\
[ a(10) a(11) a(12)...
a = (a(wm)) = a(20) a(21) a(22) ...

Equality of two matrices is defined as equality of corresponding
Components:

a=>b means a(nm)= b(nm). (1)
Matrix addition is defined as addition of corresponding components:

a=>b+ c means a(nm)= bnm) + c(nm). (2)

! Further details of matrix algebra can be found, e.g., in M. Bécher, Einfithrung
In die hohere Algebra (translated from the English by Hans Beck; Teubner,
L‘51P21g 1910) § 22-25; also in R. Courant and D. Hilbert, Methoden der mathe-
Matischen Physik 1 (Springer, Berlin, 1924) Chapter I.
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Matrix multiplication is defined by the rule ‘rows times columng’
familiar from the theory of determinants:

a = bc means a(nm) = kgo b(nk) c(km). (3)

Powers are defined by repeated multiplication. The associative ryle
applies to multiplication and the distributive rule to combined ad-
dition and multiplication:

(ab)c = a(bc); (4)
a(b + ¢) = ab + ac. (5)

However, the commutative rule does nof hold for multiplication: it
is not in general correct to set ab=ba. If a and b do satisfy this relation,
they are said to commute.

Ti - defined |
0 for n £ m,

1
1

0
I = (6nm), 5”‘”
nn

has the property

(6)

|

U NS S

al = la = a. (6a)

The reciprocal matrix to a, namely a-1, is defined by!

=1_1 1/
a* = 1. \

Q

1,
a +a =

S L PP, LU 1

As mean value of a matrix @ we denote that matrix whose diagonai
elements are the same as those of @ whereas all other elements vanish:

d = (Snma(nm)). (8)

The sum of these diagonal elements will be termed the diagonal sum
of the matrix a and written as D(a), viz.
D(a) = 3 a(nn). )

From (3) it is easy to prove that if the diagonal sum of a product
y=X1X2: - Xy be finite, then it is unchanged by cyclic rearrangement

1 Asis known, a-1is uniquely defined by (7) for finite square matrices when the
determinant 4 of the matrix a is non-zero. If 4=0 there is no matr*
reciprocal to a.
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of the factors:
D(x1xg -+ Xm) = D (XgXp41 -+ - XmX1X2 -+ Xp-1). (10)

Clearly, it suffices to establish the validity of this rule for fwo factors.
If the elements of the matrices a and b are functions of a parameter ¢,

then

3. a(nk) b(lom) = X (6(nk) b(lm) + a(nk) b(em)},

or from the definition (3):

d . .
N (ab) = ab + ab. (1)
Ranaated annlication of (11) oivec
L\Vt}\lu (A LW § ut’t’“\/ub ‘‘‘‘‘‘ \ & ’ b‘ V o

— (X1Xg -+ Xp) = X1Xg **+ Xp + X1Xg -+ Xp + ... + X1Xg -+ Xnp. (11)

From the definitions (2) and (3) we can define functions of matrices.
To begin with, we consider as the most general function of this type,

f(x1, x2, ... Xm), one which can formally be represented as a sum of a

waioh+ad 1 ££3
w Ulsll LOu Uy 11U111C1 lbal \./Ucl.ll.blcll D

Through the equations

r 7

filyy, -.- yn; X1, ... Xxg) =0,
(12)

fa(y1, - Yn; X1, ... Xn) = 0

we can then also define functions y;(xy, ... x4); namely, in order to
obtain functions y; having the above form and satisfying equation
(12), the y; need only be set in form of a series in increasing power
Products of the xx and the coefficients determined through substi-
tution in (12). It can be seen that one will always derive as many
€quations as there are unknowns. Naturally, the number of equations
and unknowns exceeds that which would ensue from applying the
Mmethod of undetermined coefficients in the normal type of analysis
incorporating commutative multiplication. In each of the equations
(12), upon substituting the series for the y; and gathering together
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like terms one obtains not only a sum term C’'xjxz but also a terp,
C’xex1 and thereby has to bring both C’ and C” to vanish (e.g., not
only C’'+4C"). This is, however, made possible by the fact that in the
expansion of each of the y;, two terms x1x2 and xgx; appear, with tw,

available coefficients.

2. Symbolic differentiation

At this stage we have to examine in detail the process of differentiation
of a matrix function, which will later be employed frequently in calcu-
lation. One should at the outset note that only in a few respects does
this process display similarity to that of differentiation in ordinary

— analysis. For example, the rules for differentiation of a product orofa
function of a function here no longer apply in general. Only if all the
matrices which occur commute with one another can one apply all

the rules of normal analysis to this differentiation.

Sunnose
| of dndd
8
y= H X1, = X Xg, * - x-’.‘ (13)
m=1

We define
oy g8 m=r—1 [6x =0 for 5 &, o
= 20 Il %, I X, o (14)

OXk =1 m=r+1 m=1 [0k =1

regards all factors as written out ndividually (e.g., not as xix3, but as
X1X1X1X2xg) ; one then picks out any factor x; and builds the product
of all the factors which follow this and which precede (in this sequence).
The sum of all such expressions is the differential coefficient of the
product with respect to this xy.

The procedure may be illustrated by some examples:

dy
— = -1
y = xn = nxn"
’ dx
. yn,m 3y . n—1l,m n—2.,m m,n—1
y = XiXg, 3T—xl Xo —+ X7 “XgX1 4 ... 4 Xg X7,
1
%

2 2
Yy = XjX2X1Xg, = X1X2X1X3 + XoX1X3X1 + X3X;{X2.

3X1
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If we further stipulate that
a(y1 + 0 0
(Y1 + ye) Y1 l y2 , (15)

oXx OXk OXk

then the deriv
functions y.
With the above definitions, together with that of the diagonal sum

(9), there follows the relation

oDy) oy
6xk(nm) OX

on the right-hand side of which stands the mn-component of the

—_An‘“.‘, Q .IQ\I T"\ o~ .‘l\l'\‘:ﬂv\ faXst o ﬁ]f‘l\ k[\ 'Iiﬂt\ll +’\ I:l\; " O ‘]"\l\ Anh""ﬂ‘:..l\

I1ldL1llA UyIUI‘k L1115 I1TlAallUull Ldll 4AldVU UT UoSDCTU LU UCL1111IU L11T uUclilvallvce
£~

doy[oxg. In order to prove (I

1
function y having the form (

8 8 r—1
ay ..... R R < o 1 e o - \TT (— \ 11"\
s, ) = 2 O 2 Ul Z(TpTp +1) 11 X%,(TpTp + 1), (17)
Xk r=1 p=r+1 p=1
Tr+l = M, Ts+l = 71, Ty = N.
On the other hand, from (3) and (9) ensues
oD (v 8 r—1i 8
T_—Z—é—z—ﬂ—x—ﬁ—hrﬁ—ﬁ—%ﬁ—ﬁdU(y) = Lk L,\TPTD {ToTp +1); (17°)
axk(mn) r=1 T p=1 ? p=r+l1 ’
T1 = Ts+l, Ty = N, Tr+1 = m.

Comparison of (17) with (17’) yields (16).

We here pick out a fact which will later assume importance and
which can be deduced from the definition (14): the partial derivatives
of a product are tnvariant with respect to cyclic rearrangement of the
factors. Because of (16) this can also be inferred from (10).

To conclude this introductory section, some additional description
is devoted to functions g(pq) of two variables. For

| y = pqr (18)
1t follows from (14) that
o & s—1-lgrpl % "5 !
o -1— ’ — = Y qr-1-ipsqi. (18"
P El ps~1—'q"p o2 qr—p%q
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The most general function g(pq) to be considered is to be representeq
in accordance with § 1 by a linear aggregate of terms

k
z = II (p*q"s). (19)
i=1
With the abbreviation
k -1
Pr=TI (p%q") II (p*q"), (20)
one can write the derivatives as
oz k &—1 ) )
- = X X PRI,
vy =1 m=0
(21)
9z k m—-1 =
Z — 3 3 qlomppegn
oq =1 m=0

oz oz oz oz
di=q—————¢q d=p———>p (2
oq oq op op

k
d2 = Z (PslquPl — q'zPlpsn),

and thus it follows that

k
dy 4 d2 = X (p8qTiPy — PipsiqTy).

=1

Herein the second member of each term cancels the first member of
the following, and the first and last member of the overall sum also
cancel, so that

dy + dz = O. (23)

Because of its linear character in z, this relation holds not only for
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expressions z having the form (19), but indeed for arbitrary analytical
functions g(pq).1

N

In concluding this brief survey of matrix analysis, we establish the
following rule: Every matrix equation

\ — N
] — V

(X]_, X3, ... Xy

remains valid 1f in all the matrices x5 one and the same permutation of all
rows and columns 1s undertaken. To this end, it suffices to show that
for two matrices a, b which thereby become transposed to a’, b’, the
following invariance conditions apply:

a’ + b = (a + b)Y, a’b’ = (ab)’,

wherein the right-hand sides denote those matrices which are formed
from a+4-b and ab respectively by such an interchange.

VE S€E a (] [11S DT OO0 D ePpiacClig (] DIroceau O
.y " Af sm1iléinnlinadinem xxrs A giiidbahla canndale 2
by thd.t Uf llu}.tl hbdtlu 1 Wlth a Du.ltd.UlC lld.t 1X.7
LY o, L,
yve write a permutation as

(0123 ..\ (n)
\ko k1 ko ks...]  \k,/'

and to this we assign a permutation matrix,

The transposed matrix to p is
= Bom). o) |

1 whenn = &,
0 otherwise.

! More generally, for functions of » variables, one has

n

0
Z (Xfr og - g Xr) = O.
r

oxy ox,

2 The method of proof adopted here possesses the merit of revealing the close
Connection of permutations with an important class of more general transfor-
Mations of matrices. The validity of the rule in question can however also be
established directly on noting that in the definitions of equality, as also of addition
and multiplication of matrices, no use was made of order relationships between
the rows or the columns.
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On multiplying the two together, one has
ph = (X p(nk) pkm)) = (bum) =1,

since the two factors p(nk) and p(km) differ from zero simultaneously
only if k=kn=F~my, i.e., when n=m. Hence p is reciprocal to p:

p=rpL

If now a be any given matrix, then

is a matrix which arises from the permutation (} ) of the rows of g,
n
and equivalently
anrh—1 (N afas BN AlBass) ) (alsar B )\
U’J — \A W\I!/N} F\W”b}} _— \W\’O, Nm’}
k

Thence follows directly

a’ + b =p(a+ b)p~t = (a + b)’,
a’b’ = pabp-1 = (ab)’,

which proves our original contention.
It is thus apparent that from matrix equations one can never
determine any given sequence or order of rank of the matrix elements.
Moreover, it is evident that a much more general rule applies,
namely that every matrix equation is invariant with respect to
transformations of the type

a’ = bab1,

where b denotes an arbitrary matrix. We shall see later that this does
not necessarily always apply to matrix differential equations.
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CHAPTER 2. DYNAMICS

3. The basic laws

The dynamic system is to be described by the spatial coordinate q
and the momentum p, these being represented by matrices

q= (q(nm)ezniv(nm)t), p = (p(nm)ezmv(nm)t). (24)

Here the »(nm) denote the quantum-theoretical frequencies associated
with transitions between states described by the quantum numbers
n and m. The matrices (24) are to be Hermitian, e.g., on transpo-
sition of the matrices, each element is to go over into its complex
conjugate value, a condition which should apply for all real . We

thus have
g(mm) g(mn) = |q(nm)|2 (25)

vimm) = — v(mn). (26)

From this, with equations (2), (3), it follows that a function g(pq)
invariably again takes on the form

g = (glm)etnscum) @9)

and the matrix (g(nm)) therein results from identically the same
process applied to the matrices (g(nm)), (p(nm)) as was employed
to find g from g, p. For this reason we can henceforth abandon the
representation (24) in favour of the shorter notation

q = (q(nm)),  p= (p(nm)). (30)

For the time derivative of the matrix g= (g(nm)), recalling to mind

! In this connection see § 8.
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(24) or (29), we obtain the matrix
g = 2xi(v(nm)g(nm)). (31)
If v(nm)#0 when nsm, a condition which we wish to assume,
then the formula g=0 denotes that g is a diagonal matrix with
g (nm)=~0dnmg(nn).
A matrix differential equation g=a is invariant with respect to
that process in which the same permutation is carried out on rows
and columns of all the matrices and also upon the numbers W, In

order to realize this, consider the diagonal matrix

W - (6ann).
Then

Wa = (S 8z W olbm) = (W.olnm))
9 = \&OnkYY ng\rtiv) ) = \ YW ag\nviv) ),

k
VAL / e A Ty \ ___ If1xr 1 v\
gw = (L E\nR)0OkmW k) = \ WmgNM)),

k

i.e., according to (31

N

)]

[ P Lo Y
LIT1 LTl

§ = (Wn—Waglam)) =— (Wg —gW).
BV h

If now p be a permutation matrix, then the transform of W,

’r _1_____

)
nm nx/

g
LJt1

h

pgpt = —— (W'g' — g¢W') = ¢,
where g’=pgp~1 and ¢’ denotes the time derivative of g’ constructed
in accordance with the rule (31) with permuted Wy,

The rows and columns of g thus experience the same permutation
as those of g, and hence our contention is vindicated.

It is to be noted that a corresponding rule does not apply to arbitrary
transformations of the form a’=bab~1 since for these W'’ is no longer
a diagonal matrix. Despite this difficulty, a thorough study of these
general transformations would seem to be called for, since it offers
promise of insight into the deeper connections intrinsic to this new
theory: we shall later revert to this point.!

1 Cf. the continuation of this work, to be published forthwith.



13 ON QUANTUM MECHANICS 289

In the case of a Hamilton function having the form
He — 2 4+ U(
=P 9)

we shall assume, as did Heisenberg, that the equations of motion are
just of the same form as in classical theory, so that using the notation
of § 2 we can write:

(32)

We now use correspondence considerations to try more generally
to elucidate the equations of motion belonging to an arbitrary Hamil-

: "HLE" ed from 4] Iooint of relativict:

......... aadimealaae Lo o d

mechanics and in particular 10r the treatment of electron motion
under the influence of magnetic fields. For in this latter case, the
function H cannot in a Cartesian coordinate system any longer be
represented by the sum of two functions of which one depends only

{‘ll\ﬂﬂ“hh]] nnnnnnn $+1ANna r\f ” t; ” " b

\./].O.Dblbd.uy, €guations O erive rom tne action
punClple
b Y
SLdt=/{p§ — H(pg)} dt = extremum. (33)
b to

If we now envisage the Fourier expansion of L substituted in (33)
and the time interval #; —¢#y taken sufficiently large, we find that only
the constant term of L supplies a contribution to the integral. The
form which the action principle thence acquires suggests the following
translation into quantum mechanics:

The diagonal sum D(L)=3L(kk) is to be made an extremum.:

e

D(L) = D(pq — H(pq)) = extremum, (34)

namely, by suitable choice of p and q, with v(nm) kept fixed.
Thus, by setting the derivatives of D(L) with respect to the elements
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of p and q equal to zero, one obtains the equations of motion

27iv(nm) m) oD(H)
" nm) =

W q( op(mn)’
~ L 4 \ 1/ \ aD(H)
2niv(mn) p(mn) = -

For the quantization condition, Heisenberg employed a relation
proposed by Thomas! and Kuhn.2 The equation

J=fpdg=fpjat

of ‘classical’ quantum theory can, on introducing the Fourier ex-

psmcinnc of » and g

oVl -dlld{,

e o0

? — Z ﬁtezniﬂ‘t, q = 2 qtezniﬂt,

T=—00 T= —00

be transformed into

. 2 0
1 = 2ni T=2_°° T T (qep—). (36)
If therein one has p=mg, one can express the p, in terms of g, and
thence obtain that classical equation which on transformation into a
difference equation according to the principle of correspondence
yields the formula of Thomas and Kuhn. Since here the assumption
that p=mq should be avoided, we are obliged to translate equation
(36) directly into a difference equation.

1 W. Thomas, Naturwiss. 13 (1925) 627.
2 W. Kuhn, Zs. f. Phys. 33 (1925) 408.
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The following expressions should correspond:

©0

Ry
1

- T 4+ mplnn+ 1) —gln,n —p(n — 7, m));
where in the right-hand expression those g(nm), p(nm) which take
on a negative index are to be set equal to zero. In this way we obtain
the quantization condition corresponding to (36) as

h

Z (p(nk)g(kn) — qnk)p(kn)) = ——. (37)

(g:p-2) with

(o o]

This is a system of infinitely many equations, namely one for each
value of #.

ropoc wit alcon ro’ec farm nf +ha
Tees L8 (&) H i Of 1N

formula (37) has to be regarded as the appropriate generalization of
this equation.

sarily becomes infinite. For otherwise one would have D(pq q

frmrm 1M sxshnavrana (7N Tanda 44 N kA Nlar) e, Mhaza 4ha cnadeotnac
il 11 \IU), I1circad \\)1) 1cdl> LV UU’"") _U\‘"J}———()() 1 11Uud LIIC 111dLlI1ICEe>
under consideration are never finite.l

4. Consequences. Energy-conservation and frequency laws

The content of the preceding paragraphs furnishes the basic rules of
the new quantum mechanics in their entirety. All other laws of
quantum mechanics, whose general validity is to be verified, must be
derivable from these basic tenets. As instances of such laws to be
Proved, the law of energy conservation and the Bohr frequency
Condition primarily enter into consideration. The law of conservation
of energy states that if H be the energy, then H=0, or that H is a

! Further, they do not belong to the class of ‘bounded’ infinite matrices hitherto
almost exclusively investigated by mathematicians.
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diagonal matrix. The diagonal elements H(nn) of H are interpreteq,
according to Heisenberg, as the enmergies of the various states of the

system and the Bohr frequency condltlon requires that

hv(nm) = H(nn) — H(mm),

Q
"

Wyn = H(nn) + const.
We consider the quantity

d = pq — qp.
From (11), (35) one finds
oH oH + oH oH
=q—o———>—q9rp — p
oq oq op op
Thus from (22), (23) it follows that d=0 and d is a diagonal matrix

condition (27). Summarizing, we obtain the equation

h
—gp=——1 (3§
2n

1

on introducing the unit matrix 1 defined by (6). We term the equation
(38) the ‘stronger quantum condition’ and base all further conclusions

upon it.
From the form of this equation, we deduce the following: If an
equation (4) be derived from (38), then (4) remains valid if p be
replaced by q and simultaneously # by —#A. For this reason one need
for instance derive only one of the following two equations from (38),

which can readily be performed by induction

h
p"q = gp" + n ——pn, (39)
b | :
9" = pqt —m——qL (39)

We shall now prove the energy-conservation and frequency laws,
as expressed above, in the first instance for the case

H = Hi(p) + Hz(q).
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From the statements of § 1, it follows that we may formally replace
y.(p) and Ha(q) by power expansions

FYi\r/
Hi = 3 asp?, Hs = 3 bsqe.
8 8

Formulae (39) and (39’) indicate that

h oH

Hq — qH = ,

2mi

[§

h oH
Hp —pH = — —— —,
2ni oq

Comparison with the equations of motion (35) yields

2mi

] =

”q — QH).

—~

G
(41)

h
2ni

b — — pH).
p h(HP P)J

Denoting the matrix Hg—gH by [;| for brevity, one has

I

H H|

b+ a bl (42)

o

a a
o o

from which generally for g=g(pq) one may conclude that

) 271 |H 271
= — = —— (Hq — H.
g P J h(gg) (43)

To establish this result, one need only conceive g as expressed in
function of p, q and p, g with the aid of (11), (11'), and |¥| as evaluated
by means of (42) in function of p, ¢ and 7, |5/], followed by application
of the relations (41). In particular, if in (43) one sets g=H, one obtains

H = 0. (44)

.Now that we have verified the energy-conservation law and recog-
Nized the matrix H to be diagonal, equation (41) can be put into the
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form

rvrv) I ¥
)

from which the frequency condition follows.

If we now go over to consideration of more general Hamilton
functions H*=H*(pq), it can easily be seen that in general H* no longer
vanishes (examples such as H*=p2q, readily reveal this). It can
however be observed that the Hamilton function H=}(p%q+qp?
yields the same equations of motion as H* and that H again vanishes.
In consequence we may express the energy-conservation and frequency

laws in the following way: To each function H* H*(pq) there can be
ame equations of motion and that
assumes the role of an energy which is c

the frequency condition.
On bearing in mind the considerations discussed above, it suffices

to show that the function H to be specified satisfies not only the
CUIIUILIVUILS
a a * a a * 4 4 g\
= , = s (43)
An Ak An An

Because of the linearity of equations (40), (45) in H, H* we have simply
to specify the commensurate sum term in H as counterpart to each
individual sum term in H*. Thus we need consider solely the case

I’fI (PtsqTs). (46)

It follows from the remarks of § 2 that equations (45) can be satisfied
by specifying H as a linear form of those products of powers of p, 4
which arise from H* through cyclic interchange of the factors; herein
the sum of the coefficients must be held to unity. The question as
to how these coefficients are to be chosen so that equations (40) may
also be satisfied is less easy to answer. It may at this juncture suffic®
to dispose of the case k=1, namely

* qur. (47)
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The formula (39) can be generalized! to

h n—1
pmgr — qrp™m = m El— IZO qn—l—l Pm—l ql. (48)

For n=1 this reverts to (39); in general (48) ensues from the fact
that because of (39) one has
qun+1 — qn+1pm — (qun — qnpm)q + m _h_ qnpm+l,
271
The new formula
h m—1
P — @ = —— 3 pmi-ignipd (48°)
271 =0

dAorixradicrae (12Y £ 9
Uciivatllves, (10 )y <.

From (50), we now obtain the relation

s+ 1

and according to (48) this is equivalent to the lower of equations (40).
Further, using (49) we find

(qrps+1 — Ps+1qr) ,

" + 1 (P8q1‘+1 —_ qT+1P8),

! A different generalization is furnished by the formulae

pmet = mini ! (m) ( n) (—h—-)j qn=t pm-a,

j=0 N7/ N7/ \2n
m,n m\ /" — h\J

qrpm = Zﬂ()()( ) pm-jqn—.‘i,
j=0 \Nf/N\7/\ 2nm

Where 7 runs to the lesser of the two integers m, .
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and by (48') this is equivalent to the upper of equations (40). Thjg
completes the requisite proof.

Whereas in classical mechanics energy conservation (H=0)
directly apparent from the canonical equations, the same law of
energy conservation in quantum mechanics, H=0 lies, as one can see,
more deeply hidden beneath the surface.

That its demonstrability from assumed postulates is far from being
trivial will be appreciated if, following more closely the classica]

method of proof, one sets out to prove H to be constant simply by

evaluating H. To this end, one first has to express H as function of
p, q and p, q with the aid of (11), (11'), whereupon for p and q the
values —dH/dq, oH/op have to be introduced. This yields H in function

of p and . Equation (38) or the formulae auoted in the footnote to

) which were derived from

'vJ.J. i A 2

3
®
S

i

to prove that tl
calculation for the most general case, as considered above along dif-

ferent lines, becomes so exceedingly involved! that it seems hardly

deep-seated physical laws.

In conclusion, we append a result here which can easily be derived

from the f rmulae of this section, namely: uations can
( 1th H rwfwnc 43

In the continuation to. this paper, we shall examine the important
applications to which this theorem gives rise.

CHAPTER 3. INVESTIGATION OF THE ANHARMONIC
OSCILLATOR

The anharmonic oscillator, having

H = 3p2 + dwie® + $i¢® (51)
has already been considered in detail by Heisenberg. Nevertheless, its

1 For the case H=(1/2m)p2+U(q) it can immediately be carried out with the
aid of (39').
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investigation will here be renewed with the aim of determining the
most general solution of the fundamental equations for this case. If
the basic equations of the present theory are indeed complete and do
not require to be supplemented any further, then the absolute values
lg(nm)|, |p(nm)] of the elements of the matrices q and p must uniquely
be determined by these equations, and thus it becomes important to
check this for the example (51). On the other hand, it is to be expected

that an uncertainty will still persist with respect to the phases gum,

1"\4- 1TAND

+ha
wnm 111 LllC l.Cl.d.L].Ull.D
iPnm
q(nm) = |q(nm)|e*"m,
plnm) = |p(nm)[etvem.
For the statistical theory, e.g., of the interaction of quantized atoms
with external radiation fields, it becomes of fundamental importance
to ascertain the precise degree of such uncertainty.

——5. Harmonic oscillator
The starting point in our considerations is the theory of the harmonic
oscillator; for small 4, one can regard the motion as expressed by
equation (51) to be a perturbation of the normal harmonic oscillation

having enerov
Aavillg ClEIZYy

O SS SUDL
haro’e analyreic Thic lattar amnlavre rarracnnndancs ~rancidaratinne +a
[V 47 § 6 e} alla.l.y old. 4 111D 1Iallilul Clllyluy o LUll bDlJUlluCllb\, LUVlldluullallully LWV
arrive at significant deductions as to the form of the solution: namely,

since classmally only a single harmonic component is present, Heisen-
berg selects a matrix which represents transitions between adjacent
states only, and which thus has the form

0 g 0 0 0 ...
g0 0 q12 0 0 ...
0

1=\lo g4evo ge3 (53)

We here strive to build up the entire theory self-dependently, without
iIIVoking assistance from classical theory on the basis of the principle
of correspondence. We shall therefore investigate whether the form
of the matrix (53) cannot itself be derived from the basic formulae or,
If this proves impossible, which additional postulates are required.



298 M. BORN AND P. JORDAN 13

From what has been stated in § 3 regarding the invariance with
respect to permutation of rows and columns, one can see right away
that the exact form of the matrix (53) can never be deduced from the
fundamental equations, since if rows and columns be subjected to
the same permutation, the canonical equations and the quantum
condition remain invariant and thereby one obtains a new and ap-
parently different solution. But all such solutions naturally differ
only in the notation, i.e., in the way the elements are numbered. We

canlr +A nrave +hat hrn*nn‘]’\ a ma ranitmhorine Af 1+c alamente +ha
SEExX 0 pPiGve nat u.u.uus a mere J.L,uuuxupx.xus 01 1S CiCIACITS, e

solution can always be brought into the form (53). The equation of
motion

g+ wjg=0 (54)

runs as follows for the elements:

(s2(em) — 3)qlm) = O, (55

where
wo = 27y, hv(inm) = Wy — W

From the stronger quantum condition

0
~r
I
‘Il
—~

4

----------- 1 L en +1. A J. Ainvmnemal Alawancd AL foa «xris1d o
welco cgudil LU LCIU 11CI1 L11C 7vLll Uld.SUII.dJ. CICLICIIL Ul pg—(Qp woulu Vo
zero, which contradicts the quantum condition. Hence equation (55)

implies that there is always an #’ for which
an -_ W”’I = k’l’o.

But since we have assumed in our basic principles that when n#m,
the energies are always unequal (W,#W,,), it follows that at most
two such indices #’ and #” can exist, for the corresponding W+, Wa*
are solutions of the quadratic equation

(Wp — %)% = h2l;

and if indeed fwo such indices »’, »” exist, it follows that the corre-
sponding frequences must be related as:

v(nn') = — v(nn"). (57)
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Now from (56) we get

11111

z v(kn)|g(nk)[2 = v(n'n){ig(nn’) |2 — |q(nn")|%} = A[8a2,  (58)

and the energy (52) ensues as

H(nm) = § X 4n? Z {—v(nk) v(km) g(nk) q(km) + viq(nk) g(km)}

= 272 §k_] q(nk) q(km){v: — v(nk) v(km)}.

In particular, for m=n we have

H(nn) = Wy = “:ﬂzv?’)(lqmn')l2 + lg(nn")2). (59)

CaSELD NE ' & " CE O ) O
v ncod dezrn demAiana (22N namn A [\ nan A ~f dhncn Anna hac 44 amiial 2 KT,
11UDL LWOU 111UILey \l } 1U \Ib } alllu Ul L11COT, VI1IC liad> LWV t:qu:;u . Vv <cC
thereby revert to one of the cases (a) or (c) and can accordingly omit

further consideration of (b).

In case (a), v(n'n)=-+w»p and from (58) it follows that

volg(nn')|2 = h/8n?, (60)

and thus from (59) that

T rrs ..\ A_ [P S AW 1 A
Wa = H(nn) = 4n2yjiq(nn’)|2 = 3voh.

Because of the assumption that W, %W, for n#m there is thus at
most one index n=mno for which the case (a) applies.

If such an #¢ exists, we can specify a series of numbers ng, #1, %2,
n3, ..., such that (ng)’'=ng+1 and Wiy >Wy. Then invariably
(n£4+1)"=ny. Hence for k>0, equations (58) and (59) give

H(ngng) = 4n2vg{|q(nk, nic+1) (2 + |g(nk, ni-1)|%, (61)
3h = dnvo{(q(nk, nic+1)|? — Iq(ne, ne-1)|%}. (62)
From (60) and (62) it follows that

(63)

g (nk, ni+1)|2 =
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and thence from (61) that
Wa, = Hmg, nx) = voh(k + B) (64

Now, we still have to check whether it be possible that there is ng
value of »# for which case (a) applies. Beginning with an arbitrary #,
we can then build #p=#», and ny=x_; and with each of these latter
write ni=ng, n;=n9 and n_,=mng, n_,=n_g etc. In this manner we
obtain a series of numbers ... n_s, #n_1, 19, #1, 72 ..., and equations (61)

(62) hold for every %k between —oo and ~+oo0. Dub this is u.u.lJUDDJ.U.I.C

since by (62) the quantities xx=|g(nx+1, 7#x)|? form an equispaced
series of numbers, and since they are positive, there must be a least
value. The relevant index can then again be designated as #o and we
thereby revert to the previous case — thus here also, the formulae

J
VR I & R U ~ J.A A csradlt
L1ICL SCC L1 d.L CVCly IIUHIUCI n IIIUDL UC Coritain CU WILI11I1

the numbers ny, since otherwise one could construct a new series
(65) proceeding from #, and for this formula (60) would again hold.
The starting terms of both series would then have the same value

1 s Ar~nc N A 1+
This proves that the indices O, 1, 2, 3... can be rearranged into a
0, 1, n2, N3 ... SUC a ,

with these new indices, the solution then takes on Heisenberg’s form
(53). Hence this appears as the ‘normal form’ of the general solution.

an:+1 > W”k

If, inversely, one stipulate that W,=H (nn) should always increase
with n, then it necessarily follows that #ng==%; this principle thus
uniquely establishes the normal form of the solution. But thereby
only the notation becomes fixed and the calculation more transparent:
nothing new is conferred physically.

Therein lies the big difference between this and the previously
adopted semiclassical methods of determining the stationary states.
The classically calculated orbits merge into one another continuously;
consequently the quantum orbits selected at a later stage have 2
particular sequence right from the outset. The new mechanics presents
itself as an essentially discontinuous theory in that herein there is n0
question of a sequence of quantum states defined by the physici’.l
process, but rather of quantum numbers which are indeed no more¢
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than distinguishing indices which can be ordered and normalized
according to any practical standpoint whatsoever (e.g., according

a~

to increasing energy Wy).

6. Anharmonic oscillator

The equations of motion
q+ w5q + 1g2 =0, (66)

together with the quantum condition yield the following system of
equations for the elements:

(0§ — w?(nm))g(nm) + 2 % q(nk) q(km) =0,

(67)
Z w(nk) g(nk) q(kn) = — hl4n.
We introduce series expansions
o laraiN o Ofan N YO 2. (2 s .
wvwn} = W~ \b”b) ‘1“ IlW‘ ’\’lf”b) "f' I|. wn \ ) 2o
g(nm) = go(nm) + Ag (nm) + A2¢® (nm) + . R

in seeking the solution.

s a8 . {
n,m—lL 1T “*mva—-l1,m, \

where the bar denotes the conjugate complex value. If one builds the
square or higher powers of the matrix q0=(g%nm)), one arrives at
matrices of similar form, being composed of sums of terms

(5)53,),, = Enén,m-—p + 5nan—p,m- (70)
This prompts us to try a solution of the form

q°(nm) = (@),

g (m) = (2)3m + ()2 -

+
g@(nm) = (y)$, + ( PIen

n which odd and even values of the index p always alternate. If one
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actually inserts this in the approximation equations

[ (w2 — wO(nm)2) g (nm) — 2w0(nm) @ (nm) g0(nm)

+ 2 ¢°(nk) ¢%(km) = O,

A * \ - (72)

3 (w0(nk) (9°00%) g0 (kn) + g0(nk) g°(b))
+ w®(nk) gO(nk) q°(kn)} = 0, J

w(" w .........

( M) (nm)2 + 2w°(nm) w(2> (nm)) qo(nm)

+ 2 (¢°(nk) gD (km) + qM(nk) ¢°(km)) = O,

a2 y - (73)
Z {0%(nk) (g%(nk) g (km) + g1 (nk) g1 (km)
k v AN LN O/ N\ ISR Y79 AN W YOO ANRSWL LW RSAN
+ 9 (nk) ¢°(km) ) + wD(nk) (¢°(nk) g7 em)
+ qW(nk) ¢°(km)) + @@ (nk) ¢°(nk) ¢°(km)} = O |

and notes the multiplication rule

2 Q : (5)@)(’7)@ — 0 r £ ﬂulnéu M—D—0
n ’ ’ ’ y Zat’ |

k N P . b o
+ &n, n+p, n+p—q $n Nn+p—q On, m—p+q 74)
\7%)

-+ Qn, n—p, n—n+aq f.n—p Nn—n 5n,m+p—-q

+ Qn, n—p, n-p—q $n—p Nn—p—q On, m+p+a>

[
Q
-

.‘ wn
(@]
QD
y-

' ek o
o+
o
C D

J

1

(o]

etail, the calculation yields the followmg.
The first of the equations (72) gives, after substitution of the
expressions (71),

ZwExn + |an|? + |an-12 =0,

— 3wits + anns1 =0, (75)

(1) —_
n,n-—-l - ¥

and the second is identically satisfied. One thus has

|a'n|2 + |an-1/2

2
2w;

n———'

)

Anln+1
2
3wy
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The first of the equations (73) yields

20042 Wp n+1 + 2apXn+1 + 2anXn + An-1%n-1 + n+1%5 = 0,

— 8wiyn + an¥n+1 + ani2xn =0, (77)

)

(1 —_
wn,n—2 - 0: ]

whereas the second equation is not identically satisfied, but furnishes
a relation from which y, can be determined:

AnYn + Anyn — An-1Yn-1 — Gn-1Yn-1 + 2|x,’,|2 - 2|x1'1—2|2
(2) (2)

n,n+1 n,n—1
— |an|2 — |@n-1]2 = O. (78)
wo
The solution is:
I
»(2) — (la. . 412 L la. 112 L 3l2..12)
Wn,n-{-]_ 3(03 \I"RT1) i | bt (2 §] i “ivnl J»
Q
. . (79)
1
! — a .
n Andn+1dn
g 1205 i
Further, 1f for brevity one introduces
- \ = QN
NMn = A@nYn T &nYn, (oV)

Expressions (76) and (79) show that the quantities x,, x4, ys can
be expressed through the solution of the zero-th order approximation
an. Thus their phases are determined by those of the harmonic oscil-
lator. For the quantities y,, the situation seems to be different, since
although 7, can uniquely be determined from (81), y, cannot be
Obtained absolutely from (80). It is probable that the next higher
order of approximation gives rise to an auxiliary determining equation
for y,,. We have to leave this question open here but we should like
to indicate its significance as a point of principle in regard to the
Completeness of the entire theory. All questions of statistics invariably
depend finally upon whether or not our supposition that of the phases
of the g(nm) ome in each row (or each column) of the matrix remains
Undetermined be valid.
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In conclusion we present the explicit formulae which are obtaineg
by substituting the solution of the harmonic oscillator found previously

(§ 5). In normal form, by (63), this runs as follows:
an = VC(n + 1)elo, C = hl4nwo = h/8n2vy. (82)
Thence, using (76), (79), (81) one obtains

)
x% - - 5 (2” + 1),
2wg
, C
X4 = 3 ; V(n + l)(n + 2)e1(¢n+¢n+1) { (83)
We
‘V/CS -
Y4 = vV (n + 1)(n + 2)(n + 3)elentomnton)
12w, J
Wpno1 =0, n—z =0,
o ¢ ’ (%)
Wn,n—l 3(0‘3) v,
that is,
11C2 1~ [] 1\
Nn — Nn-1 = Ol <n + 1),
7o
11C?
Nn = aag:q; + a-ﬂyo; = — (n + 1\2
Sw,

If one sets y,=|y,le!*", then

n 114/C3
|Vn| COS (pn — yn) = T 4 vVn 4+ 18, (85)

2|an| - 18w;

In this approximation, ¥, cannot be specified any more closely than
this.

However, we should like to write out the final equations when oné
makes the assumption that y,=¢,. These are as follows (up to terms
of higher than second order in 4):

S5C

e n—+ ..., (86

wn,n — 2) = 2wy + ...;

wn,n — 1) = wg — A2
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C
g(n, n) = — — 2n+ 1)+ ...,
Wo
— 11Cn
gn, n — 1) = vV Cnelor- (l + A2 8ok + ),
-  (87)
gn, n — 2) = A —5 Vnn — 1)el@ritoed 4
3wyq
C3
q(n, n — 3) = A2 l\gwg "V/'n'(n — 1)(n — Z)ei(‘p"‘l+"”"’+"”"’) + J

We have also calculated the energy directly and derived the following

formula:

W =hvo(n +3) — A2

The frequency condition is actually satisfied, since, remembering (82

N
-

we have

TYY h & & d L ] A 2C2 % h ya < 3
Wp — Wp-1 = hvg — AS 3 n+...= wn,n — 1),
wo r=rA4
h
W,,—W,,_2=2hvo+ e =?x—w(n,n-—2).

With the formula (88) we can associate the observation that already
in terms of lowest order there occurs a discrepancy from classical
theory which can formally be removed by the introduction of a ‘half-
integer’ quantum number #'=n-+4}. This has already been remarked
by Heisenberg. Incidentally, our expressions w(n, n—1) as given by
(86) agree exactly with the classical frequencies in all respects. For
Ccomparison, we note the classical energy to bel

5C?
WD = hyon — A2 o n? + ...,
@Wo

and thus the classical frequency to be:

' See M. Born, Atommechanik (Berlin, 1925), Chapter 4, § 42, p. 294; one has
set g=4} in the formula (6) in order to obtain agreement with the present
treatment,
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1 owh 5C?
el = ™ '—_—'h‘l‘o—lz .2 n -+ ...
v viIiv VLI:)O

1
= gl — 1) = = (W — W),

We have, finally, checked that the expression (88) can also be derived
from the Kramers-Born perturbation formula (up to an additive
constant).




