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MEMORIA
�

Resultados clasico-cuánticos versus resultados cuánticos exactos para una partícula en una caja

La llamada partícula en una caja unidimensional, o en un intervalo, es uno de los sistemas modélicos
que pueden usarse para ilustrar aspectos y conceptos importantes de la mecánica cuántica elemental.
Como es sabido, el correspondiente operador Hamiltoniano (auto-adjunto) posee un dominio general
que involucra un número infinito de condiciones de frontera; de hecho, ese dominio podría incluir hasta
una familia de cuatro parámetros de condiciones de frontera. Es de destacar que cada una de estas
condiciones de frontera lleva a la conservación de la densidad de corriente de probabilidad j(x) =
(~/m) Im(ψ̄(x)ψ′(x)) en los extremos de la caja, es decir, j(a) = j(b) (para una caja en el intervalo
x ∈ [a, b] ≡ Ω). Sin embargo, solo para algunas de estas condiciones de frontera se tiene que j(a) =
j(b) = 0. A pesar de la gran variedad de condiciones de frontera, o de extensiones auto-adjuntas del
Hamiltoniano, clasicamente solo se pueden distinguir dos situaciones o casos: (i) una partícula que rebota
entre dos paredes rígidas, y (ii) una partícula que desaparece una vez que alcanza una pared y entonces
aparece en la otra pared (o equivalentemente, una partícula que se mueve a lo largo de un círculo
con rapidez constante). Por supuesto, en estos dos problemas la partícula lleva a cabo un movimiento
periódico, y esta periodicidad, junto con una regla de cuantización, nos puede llevar a resultados que
coinciden con los que se obtienen al usar la mecánica cuántica moderna. Especificamente, a partir de la
serie de Fourier de la posición de la partícula para cada problema podemos identificar tanto a la amplitud
clásica (o de Fourier) como a la frecuencia mecánica del armónico τ -ésimo, luego podemos expresar estas
cantidades en función de la etiqueta cuántica n haciendo uso de una regla de cuantización como la de
Bohr-Sommerfeld-Wilson. Pues bien, en el límite n� τ estas cantidades coinciden, respectivamente, con
la amplitud de Heisenberg y la frecuencia espectral asociada a la transición n→ n−τ , ambas obtenidas
usando la mecánica cuántica moderna. Estos resultados indican que, el caso clásico (i) mencionado
antes corresponde al de una partícula cuántica descrita por el Hamiltoniano con la condición de frontera
de Dirichlet, es decir, ψ(a) = ψ(b) = 0; mientras que el caso (ii) corresponde al de una partícula
cuántica descrita por el Hamiltoniano con la condición de frontera periódica, es decir, ψ(a) = ψ(b) y
ψ′(a) = ψ′(b) (vea la Ref. [1]).
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�
La partícula en un pozo infinito versus la partícula en una caja

Para forzar a una partícula cuántica a permanecer en el interior de una caja, hemos identificado dos
casos o modos de confinamiento: (i) si la partícula (libre) se esta moviendo sobre toda la linea real, es
decir, si suponemos que la partícula se mueve en el interior de un pozo de potencial finito, basta hacer
muy grande al potencial en la regiones externas al segmento de linea donde finalmente estará la partícula.
Este caso se puede llamar “la partícula en un pozo de potencial cuadrado infinito” (y la respectiva función
de onda satisface la condición de frontera de Dirichlet en toda la región exterior, es decir, se anula allí).
(ii) Si la partícula (libre) ha estado moviéndose dentro de la caja, un potencial externo no es necesario
para confinar la partícula, solo condiciones de frontera. Este caso se puede llamar “la partícula en la caja”
(y la respectiva función de onda -si se habla de confinamiento- debe anular a la densidad de corriente
de probabilidad en los extremos de la caja, siendo la condición de frontera de Dirichlet solo una de
las infinitas condiciones de frontera que podemos usar). En el caso (i), el teorema de Ehrenfest puede
verificarse para un estado general que es combinación lineal de autoestados y que pertenece a L2(R).
Es decir, d〈X̂〉/dt = 〈P̂ 〉/M , y d〈P̂ 〉/dt = 〈F̂ 〉, pero el cálculo de 〈F̂ 〉 debe hacerse con cuidado ya
que F̂ = F (x) = −dV (x)/dx, y el potencial V (x) es un pozo de potencial (cuadrado) infinito (lo que
conduce a deltas de Dirac con intensidades infinitas en las paredes del pozo, que están presentes en F̂ ). En
el caso (ii), el teorema de Ehrenfest puede también verificarse, por ejemplo, para estados que pertenecen
a L2(Ω) y que satisfacen la condición de frontera de Dirichlet en los extremos de Ω. En efecto, se obtiene
lo siguiente: d〈x̂〉/dt = 〈p̂〉/M , y d〈p̂〉/dt = 〈f̂〉 + 〈fB〉 = 〈fB〉, donde f̂ = f(x) = −dv(x)/dx = 0
(v(x) es el potencial dentro de la caja), y fB = fB(x, t) = (−~2/2M) | u |−2 ∂x | ∂u/∂x |2 es una
fuerza cuántica no-local en el sentido que es dependiente del estado cuántico en cuestión u = u(x, t) (y
por lo tanto 〈fB〉 es un término de frontera, es decir, es un término que se obtiene evaluando una cierta
cantidad en cada frontera de la caja y luego restando los dos resultados). Por supuesto, las ecuaciones
de Ehrenfest en los dos casos mencionados son equivalentes, es decir, ellas dan los mismos resultados.
En conclusión, tanto en (i) como en (ii) la partícula solo puede moverse entre dos paredes, y en cada
caso se tiene un teorema de Ehrenfest que tiene sentido (vea la Ref. [2]).

�
Sobre el cálculo formal de d〈x̂〉/dt y d〈p̂〉/dt para la partícula en una caja

La demostración usual de las ecuaciones de Ehrenfest en la representación de coordenadas con
x ∈ R no parece tener problemas, sin embargo, la forma típica que tienen estas ecuaciones no siempre
se mantiene cuando la partícula se encuentra en el interior de una caja. Es decir, la demostración de
estas ecuaciones en este último caso puede llevar a resultados inesperados. De hecho, en el cálculo
formal de las derivadas con respecto al tiempo de 〈x̂〉 y 〈p̂〉 surgen ciertos términos de frontera que
no necesariamente se anulan (aquí llamamos formal al hecho que no nos restringimos a los dominios
de los operadores auto-adjuntos involucrados, ni nos preocupamos por la apropiada clase de funciones
sobre las cuales estos operadores y algunos de sus productos deben actuar). Puede demostrarse que
estos términos de frontera se pueden hacer depender solo de los valores que toman en los extremos
de la caja la densidad de probabilidad, su derivada espacial, la densidad de corriente de probabilidad,
y el potencial externo. Si el término de frontera en d〈x̂〉/dt no se anula, se tiene en general que
d2〈x̂〉/dt2 6= 〈f̂〉/M . Si la partícula se encuentra -digamos- en una caja del tamaño de la recta real,
pero con una probabilidad baja de encontrarse justamente en el infinito, las derivadas con respecto
al tiempo de 〈x̂〉 y 〈p̂〉 obedecen las relaciones de Ehrenfest usuales. Puede también mostrarse que
d〈p̂〉/dt es igual a 〈f̂〉+ 〈fQ〉+ término de frontera (aquí f̂ = f(x) = −dv(x)/dx, como se dijo antes,
fQ = −∂Q/∂x es la llamada fuerza cuántica, siendo Q el potencial cuántico de Bohm, y el término de
frontera depende esencialmente de los valores que allí toman la densidad de probabilidad y de corriente
de probabilidad). Además, 〈fQ〉 puede siempre escribirse como un término de frontera, y la cantidad
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que se evalua en los extremos de la caja, en casos particulares, es proporcional a la llamada cantidad de
información de Fisher. Desde luego, el término 〈fB〉 mencionado en el párrafo anterior es precisamente
〈fQ〉. Puede notarse, en general, que 〈fQ〉 tiene un rol significativo en situaciones en las cuales la
partícula esta confinada a una región, incluso si f̂ = 0 en esa región, por ejemplo, cuando la partícula
(libre) se encuentra confinada a una caja con la condición de frontera de Dirichlet (vea la Ref. [3]).

�
La partícula en un salto infinito versus la partícula en una semi-línea

Así como pueden identificarse dos modos de confinamiento para una partícula cuántica (libre) en un
intervalo finito [2], pueden considerarse también dos tipos de confinamiento al restringir la partícula a
un intervalo semi-infinito: (i) el que nos lleva a la llamada “partícula libre en un potencial salto infinito”
(y la respectiva función de onda satisface inevitablemente la condición de frontera de Dirichlet en toda
la región externa al intervalo semi-infinito), y (ii), el que nos lleva a la llamada “partícula libre sobre
una semi-línea” (y la condición de frontera de Dirichlet para la correspondiente función de onda es solo
una condición de frontera más). De nuevo puede demostrarse que, en cada caso, los valores medios de
la posición, el momentum y la correspondiente fuerza, como funciones del tiempo, verifican el teorema
de Ehrenfest. Sin embargo, la fuerza involucrada no es la misma en cada caso. De hecho, uno tiene la
fuerza clásica externa usual en el primer caso, y una fuerza cuántica de frontera (no-local) en el segundo
caso. A pesar de esta diferencia, los correspondientes valores medios de estas cantidades dan los mismos
resultados. En consecuencia, las ecuaciones de Ehrenfest en las dos situaciones son equivalentes, y la
consistencia interna del formalismo de la mecánica cuántica se ratifica (vea la Ref. [4]).

�
La trayectoria clásica a partir del movimiento cuántico para la partícula en una caja (transparente)

Como se establece usualmente, la mecánica clásica se puede extraer de la mecánica cuántica impo-
niendo límites matemáticos. Este resultado general es llamado el principio de correspondencia, y se puede
expresar haciendo ~ → 0 y n →∞ junto con la restricción n~ = constante (n es un número cuántico
típico). El teorema de Ehrenfest, bajo ciertas condiciones, proporciona una relación general formal entre
la dinámica clásica y la cuántica. En particular, bajo las condiciones del principio de correspondencia, los
valores medios 〈x̂〉(t) y 〈p̂〉(t) (en un estado general complejo, normalizado, y dependiente del tiempo)
deben ser iguales a la posición y al momentum clásicos, x(t) y p(t). Especificamente, se puede probar
que, en el caso de una partícula en una caja penetrable (o una caja con paredes transparentes), la función
del tiempo 〈x̂〉(t) se reduce a la trayectoria newtoniana, x(t), haciendo (esencialmente) la aproximación
de números cuánticos altos sobre el valor medio, es decir, imponiendo las condiciones del principio de
correspondencia. Es de mencionarse que, en este problema, la conexión clasico-cuántica pudo verificarse
porque se pudo calcular la serie de Fourier asociada a la posición de la partícula, sin embargo, este no
es siempre el caso (vea la Ref. [5]).
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Notas e Discussões

Classical-quantum versus exact quantum results for a particle in a box
(Resultados clássico-quânticos versus resultados quânticos exatos para uma part́ıcula em uma caixa)

Salvatore De Vincenzo1

Escuela de F́ısica, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
Recebido em 23/7/2011; Aceito em 6/2/2012; Publicado em 20/4/2012

The problems of a free classical particle inside a one-dimensional box: (i) with impenetrable walls and (ii)
with penetrable walls, were considered. For each problem, the classical amplitude and mechanical frequency of
the τ -th harmonic of the motion of the particle were identified from the Fourier series of the position function.
After using the Bohr-Sommerfeld-Wilson quantization rule, the respective quantized amplitudes and frequencies
(i.e., as a function of the quantum label n) were obtained. Finally, the classical-quantum results were compared
to those obtained from modern quantum mechanics, and a clear correspondence was observed in the limit of
n ≫ τ .
Keywords: classical mechanics, particle in a box, Fourier harmonics, Heisenberg harmonics.

Foram considerados os problemas de uma part́ıcula livre clássica dentro de uma caixa unidimensional: (i)
com paredes impenetráveis e (ii) com paredes penetráveis. Para cada problema, foram identificados a partir da
série de Fourier da função de posição, a amplitude clássica ea freqüência mecânica clássica do τ -ésimo harmônico
do movimento da part́ıcula. Depois de usar a regra de quantização de Bohr-Sommerfeld-Wilson, foram obtidos
a respectivas amplitudes e freqüências quantizadas (isto é, como uma função do rótulo quantum n). Finalmente,
os resultados clássico-quânticos foram comparados com aqueles obtidos a partir da moderna mecânica quântica,
e uma clara correspondência foi observada no limite de n ≫ τ .
Palavras-chave: mecânica clássica, part́ıcula em uma caixa, harmônicos de Fourier, harmônicos de Heisenberg.

1. Introduction

The quantum particle in a box (0 ≤ x ≤ L) is one
of the best systems to illustrate important aspects and
key concepts of elementary quantum mechanics [1–3].
The domain of the corresponding self-adjoint Hamilto-
nian operator involves an infinite number of boundary
conditions. Specifically, the domain includes a four-
parameter family of boundary conditions, and each of
the conditions leads to the conservation of the proba-
bility current density j(x) = (~/m)Im

(
ψ̄(x)ψ′(x)

)
at

the ends of the box (i.e., j(0) = j(L)). However, for se-
veral boundary conditions, the current is equal to zero
(j(0) = j(L) = 0) [4–7]. When a finite square well
potential tends toward infinity in the regions outside of
the box (to confine the particle inside the box), only the
Dirichlet boundary conditions are recovered [4,8]. Simi-
larly, the solutions to Heisenberg’s equations of motion
obtained from the respective classical equations for a
particle bouncing between two rigid walls, lead to only
one of the extensions of the Hamiltonian operator (the
extension that contains the Dirichlet boundary condi-
tions [9]). However, in the classical discussion, another

case must be considered. Namely, the case where the
particle disappears upon reaching a wall and then ap-
pears at the other end must be considered. This type of
movement (which is very unusual because the particle
is not actually trapped between the two walls) corres-
ponds to that of a quantum particle described by the
Hamiltonian operator under periodic boundary conditi-
ons. Although there are an infinite number of quantum
self-adjoint Hamiltonian operators, all of the operators
do not correspond to a different classical system. In our
cases, each Hamiltonian operator is defined by a spe-
cific boundary condition (rather than the form of each
Hamiltonian). However, if a classical expression is de-
pendent on the canonical variables, the corresponding
quantum operator is not unique because the canonical
operators can be ordered in various ways (see Ref. [9]
and references therein).

The problem of a classical particle confined to an
impenetrable box has been considered in several spe-
cific contexts [9–14]. In contrast, except for Ref. [9]
and brief comments in Refs. [5, 15, 16], the problem of
a classical particle inside a penetrable box is rarely dis-
cussed. Clearly, in each of these problems, the particle

1E-mail: salvatore.devincenzo@ucv.ve.
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carries out a periodic motion. In this short paper, we
wish to illustrate the connection between the periodi-
city of particle motion and quantum jumps. First, the
so-called classical amplitude and mechanical frequency
of the τ -th harmonic of the motion of the particle were
identified from the Fourier series of each position func-
tion (x(t)). Next, the Bohr-Sommerfeld-Wilson quan-
tization rule was used to obtain the respective quanti-
zed amplitudes and frequencies, i.e., the classical am-
plitudes and frequencies as a function of the quantum
label n. Subsequently, these classical-quantum quanti-
ties were compared to the respective transition ampli-
tudes (cn,n−τ ) and transition frequencies (ωn,n−τ ) ob-
tained from modern quantum mechanics (Heisenberg-
Schrödinger’s quantum mechanics). In fact, these quan-
tum quantities are the elements that constitute the ma-
trix of Heisenberg’s harmonics xn,m ≡ cn,m exp(iωn,mt)
(in this case, the matrix is associated with transitions
n → m = n − τ). As a result, the classical-quantum
quantities are equal to the exact quantum quantities
for small jumps (n ≈ n − τ or n ≫ τ). We believe
that the present manuscript (which is somewhat inspi-
red by the excellent paper by Fedak and Prentis [13])
may be of genuine interest to teachers and students of
physics because the two simple examples described he-
rein (in particular, the particle inside a penetrable box,
which is discussed in the present article for the first
time) illustrate the deep connection between classical
and quantum mechanics.

2. Classical results

Let us begin by considering the motion of a free par-
ticle with a mass of m, which is confined to a one-
dimensional region of length L that contains rigid walls
at x = 0 and x = L (the potential U(x) is zero inside
the box). The particle moves back and forth between
these two points forever. The extended position func-
tion versus time, x(t) (which is periodic for all times
t ∈ (−∞,+∞) with a period of T ), can be written as

x(t) =
+∞∑

n=−∞
fn(t)Θn(t), (1)

where fn(t) = (vT/2)− v |t− nT − (T/2)|, v > 0 is the
speed of the particle, Θn(t) ≡ Θ(t−nT )−Θ(t−(n+1)T )
(Θ(y) is the Heaviside unit step function, Θ(y > 0) = 1
and Θ(y < 0) = 0) and vT/2 = L. In the time in-
terval nT ≤ t ≤ (n + 1)T , the zigzag solution (1) is
equal to x(t) = fn(t), where n is an integer, and veri-
fies x(nT ) = 0 and x((n+(1/2))T ) = L). For example,
the solution at 0 ≤ t ≤ T (n = 0) is x(t) = f0(t);
thus, x(t) = vt for 0 ≤ t ≤ T/2 and x(t) = vT − vt for
T/2 ≤ t ≤ T . In contrast, the sum in Eq. (1) should
begin at n = 0 if the particle starts from x = 0 at
t = 0. In fact, under these circumstances, the solution
of the equation of motion, x(t), verifies the condition

x(t ≤ 0) = 0. Because the position as a function of
time given in Eq. (1) is periodic in t ∈ (−∞,+∞), the
formula can be expanded into a Fourier series

x(t) =
+∞∑
τ=0

aτ cos (ωτ t) . (2)

The classical amplitude, aτ , takes on the following
values

aτ = − 2vT

π2τ2
, τ = 1, 3, 5, . . . . (3)

Moreover, aτ = 0 with τ = 2, 4, 6, . . . and a0 =
vT/4. The mechanical frequency of the (permitted) τ -
th harmonic of the motion of the particle is

ωτ = τω, (4)

where ω = 2π/T is the fundamental frequency of peri-
odic motion.

Let us now consider the motion of a free particle
with a mass of m in a one-dimensional box. The par-
ticle is not confined to the box, and the walls at x = 0
and x = L are transparent (in this problem, the poten-
tial U(x) is zero inside the box). Under these circums-
tances, the particle starts from x = 0 (for example),
reaches the wall at x = L and reappears at x = 0 again
(and it does so forever). The extended position as a
function of time (x(t)) is periodic and discontinuous
and can be written as

x(t) =
+∞∑

n=−∞
gn(t)Θn(t), (5)

where gn(t) = vt− nvT , v > 0 is the speed of the par-
ticle and T is the period (Θn(t) was introduced after
Eq. (1)). In each time interval nT < t < (n+ 1)T , the
(extended) position is x(t) = gn(t), where n is an inte-
ger (as a result, all the discontinuities occur at t = nT ).
For example, the solution at t ∈ (0, T ) (n = 0) is
x(t) = g0(t); thus, x(t) = vt. To be more precise, if
the particle starts from x = 0 at t = 0 (and it begins to
move towards x = L), then the sum in Eq. (5) should
begin at n = 0. In that case, the solution of the equa-
tion of motion (x(t)) verifies the condition x(t ≤ 0) = 0.
Clearly, the periodic function x(t) in Eq. (5) (with
t ∈ (−∞,+∞)) can be expanded into a Fourier series

x(t) =
+∞∑

τ=−∞
cτ exp (iωτ t) . (6)

The classical amplitude, cτ , has the following values

cτ = i
vT

2πτ
, τ = ±1,±2, . . . . (7)

Moreover, c0 = vT/2. Once again, the mechani-
cal frequency of the (permitted) τ -th harmonic of the
motion of the particle is

ωτ = τω, (8)



Classical-quantum versus exact quantum results for a particle in a box 2701-3

where ω = 2π/T is the fundamental frequency of peri-
odic motion. Note: if the particle is moving from right
to left (starting at x = L, for example) the Fourier se-
ries associated to x(t) is the Eq. (6), but the classical
amplitude is the complex conjugate of cτ . The series in
Eq. (6) appears to be complex but is actually real. In
fact, because cτ = −c−τ (τ ̸= 0), x(t) can be written
as

x(t) =
vT

2
− vT

π

+∞∑
τ=1

1

τ
sin (ωτ t) . (9)

Thus, the extended function (x(t)) given in Eq. (5)
is discontinuous at t = nT , where n is an inte-
ger. Nevertheless, if one wants to assign a value to
x(nT ), then a value must be assigned to Θ(0). At
t = nT , the Fourier series (6) (or (9)) converges to
x(t) ≡ (x(t+) + x(t−))/2 , where x(t±) ≡ lim

ϵ→0
x(t± ϵ)

and ϵ > 0 (as usual). Thus, in this case, the defi-
nition Θ(0) ≡ 1/2 must be applied; therefore (from
Eq. (5)), x(nT ) = vT/2. Clearly, the latter choice is
not physically satisfactory because the particle always
reaches x = L (it is moving from x = 0). Thus, we
may prefer to choose Θ(0) ≡ 0, which implies that
x((n+1)T ) = vT = L, where n is an integer (more pre-
cisely, n ≥ 0). Clearly, when Θ(0) ≡ 0 is selected, the
time at which the particle passes through x = 0 cannot
be obtained. This situation is unavoidable; thus, the
best that we can do is to assume that the motion of
the particle in each time interval nT ≤ t ≤ (n+ 1)T is
independent of the other intervals. Therefore, we must
also add (by definition) the condition x(nT ) = 0.

3. Classical-quantum versus exact
quantum results

Thus, we have seen that the classical particle confined
to a box and the particle inside a penetrable box dis-
play periodic motion (between the walls of the box).
This is precisely the type of motion considered by Hei-
senberg in his famous paper published in 1925 [17] (For
an english translation of the article, see Ref. [18]. For
a delicious discussion on the ideas expressed in Heisen-
berg’s article, see Ref. [19]). To illustrate the important
connection between the periodic motion of a classical
particle (its classical harmonics) and quantum jumps,
the problem of a particle confined to a box (as descri-
bed in Ref. [13]) was considered in the present study.
Moreover, for the first time, the problem of a particle
inside a box with penetrable walls was also considered
herein.

A condition that quantizes the classical states
of a one-dimensional periodic system is the Bohr-
Sommerfeld-Wilson (BSW) quantization rule (see Refs.
[13,20])

1

2π

∮
dxmv(x) = n~, (10)

where ~ is Planck’s constant and n are quantum la-
bels. Integration is conducted over the entire period of
motion. From Eq. (10), the (constant) speed of the
particle (v > 0) was obtained as a function of n (i.e.,
the speed of the particle in quantum state n)

v ≡ v(n) =
π~
mL

n. (11)

Moreover, by substituting v(n) into the classical me-
chanical energy equation E = mv2/2, the same quan-
tum energy spectrum given by modern quantum me-
chanics was obtained

E ≡ E(n) =
π2~2

2mL2
n2 =

~2

2m

(nπ
L

)2

, (12)

where, in this case, n = 1, 2, . . .. Similarly, the ex-
pression for the quantized speed (11) could be substi-
tuted into Eq. (3) and Eq. (4) to obtain the quanti-
zed amplitude and quantized frequency, respectively. In
the former case, substitution was not necessary because
vT/2 = L. Therefore

aτ (n) = − 4L

π2τ2
, τ = 1, 3, 5, . . . . (13)

Moreover, aτ (n) = 0, where τ = 2, 4, 6, . . . and
a0(n) = L/2. Thus, aτ (n) is independent of the quan-
tum state (n). In the latter case, Eq. (11) was subs-
tituted into Eq. (4), and the quantized frequency was
obtained

ωτ (n) = τ
2π

T
= τ

2πv(n)

2L
= τ

π2~
mL2

n ≡ τω(n). (14)

Clearly, the Fourier series for x(t) can also be quan-
tized by replacing aτ → aτ (n) and ωτ → τω(n) in
Eq. (2). Thus, we can write

x(t, n) = a0(n) + a1(n) cos(ω(n)t) +

a3(n) cos(3ω(n)t) + · · · . (15)

Equation (15) describes the classical motion of the
particle in quantum state n. Clearly, these results are
classical-quantum mechanical because they were obtai-
ned by supplementing the classical Fourier analysis with
a simple quantization condition.

Now a question arises: how (and under which con-
ditions) can we generate Eq. (13) and (14) using mo-
dern quantum theory? In his paper published in 1925,
Heisenberg assigned a matrix of harmonics xn,m ≡
cn,m exp(iωn,mt) (associated with transition n→ m) to
x, where the transition amplitude cn,m = ⟨ψn | x | ψm⟩
is a measure of the intensity of light, and xn,m =
⟨Ψn | x | Ψm⟩ (where Ψn(x, t) = ψn(x) exp (−iEnt/~)
are solutions to the time-dependent Schrödinger equa-
tion). In the transition n → n − τ , where n ≫ τ , the
quantized Fourier amplitude cτ (n) must be equal to the
Heisenberg amplitude cn,n−τ
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cτ (n) = cn,n−τ . (16)

Equivalently,
aτ (n) = 2cn,n−τ , (17)

because the coefficients of the cosine Fourier se-
ries aτ (n) with τ = 1, 3, 5, . . . in Eq. (15) are
always twice that of the exponential Fourier series∑

τ cτ (n) exp (τω(n)t) [13] (nevertheless, aτ (n) = cτ (n)
with τ = 0). The stationary states of a quantum par-
ticle to a box with a width of L under Dirichlet boun-
dary conditions (ψn(0) = ψn(L) = 0) are characterized
by the energies given in Eq. (12) (E(n) = En) and the
following eigenfunctions

ψn(x) =

√
2

L
sin

(nπ
L
x
)
, n = 1, 2, . . . . (18)

If cn,n−τ = ⟨ψn | x | ψn−τ ⟩ =
∫ L

0
dxψn(x)xψn−τ (x)

is calculated, and the result are substituted into
Eq. (17), we obtain

aτ (n) = − 4L

π2τ2
1− τ

n(
1− τ

2n

)2 −→
n≫τ

− 4L

π2τ2
, (19)

where τ = 1, 3, 5, . . ., aτ (n) = 0 with τ = 2, 4, . . . and
a0(n) = L/2. Clearly, the quantized Fourier amplitude
aτ (n) (Eq. (13)) can also be obtained from Heisenberg-
Schrödinger’s quantum mechanics.

Likewise, the quantized frequency ωτ (n) must be
equal to the transition (or spectral) frequency ωn,n−τ =
(En − En−τ )/~ for n≫ τ [13]

ωτ (n) = ωn,n−τ . (20)

In fact, for the particle confined to the box, ωn,n−τ

was calculated from Eq. (12) with E(n) = En. Using
Eq. (20), we can write

ωτ (n) = τ
π2~
mL2

n
(
1− τ

2n

)
−→
n≫τ

τ
π2~
mL2

n. (21)

Clearly, the same result given in Eq. (14) was ob-
tained in the limit n≫ τ .

Next, a particle inside a box with transparent walls
was considered. Using the BSW rule in Eq. (10), the
speed of the particle as a function of n was obtained

v ≡ v(n) =
2π~
mL

n. (22)

By substituting Eq. (22) into E = mv2/2, we obtain

E ≡ E(n) =
2π2~2

mL2
n2 =

~2

2m

(
2nπ

L

)2

. (23)

In this case, n = 0, 1, 2, . . .. The quantum energy
spectrum given by modern quantum mechanics (with
the exception of the ground state) is degenerate (see

Eq. (27)), and the complex eigenfunctions correspon-
ding to the negative sign (−) are plane waves propa-
gating to the left (they are also eigenfunctions of the
momentum operator p̂ = −i~d/dx with negative eigen-
values). Because the classical motion of the particle
moving to the right is under consideration, a positive
sign (+) must be used. Clearly, each state (n > 0)
with the positive sign in Eq. (27) corresponds to a one-
dimensional trip in which the particle is moving inside
the box from left to right at a constant speed.

Because vT = L, Eq. (22) does not have to be subs-
tituted into Eq. (7); therefore, the quantized amplitude
is independent of n

cτ (n) = i
L

2πτ
, τ = ±1,±2, . . . . (24)

Moreover, c0(n) = L/2. Alternatively, by substi-
tuting Eq. (22) into Eq. (8), the following quantized
frequency was obtained

ωτ (n) = τ
2π

T
= τ

2πv(n)

L
= τ

4π2~
mL2

n ≡ τω(n). (25)

This frequency must be positive if it corresponds to the
frequency of light emitted as the particle jumps from
level n to level n − τ < n. Finally, the quantized Fou-
rier series x(t, n) was obtained from x(t) (Eq. (6)) by
replacing cτ → cτ (n) and ωτ → τω(n)

x(t, n) = · · ·+ c−1(n) exp (−iω(n)t) + c0(n) +

c1(n) exp (iω(n)t) + · · · . (26)

For a free particle in a box with a width of L
and transparent walls, the periodic boundary condition
ψn(x) = ψn(x + L) is physically adequate. The exact
energy eigenvalues are given in Eq. (23) (E(n) = En),
and the eigenfunctions are

ψn(x) =
1√
L
exp

(
±i2nπ

L
x

)
, n = 0, 1, 2, . . . . (27)

Nevertheless, only the positive sign must be em-

ployed. By calculating cn,n−τ =
∫ L

0
dx ψ̄n(x)xψn−τ (x)

and substituting the result into Eq. (16) (the bar re-
presents complex conjugation), we obtain

cτ (n) = i
L

2πτ
. (28)

In this case, τ = ±1,±2, . . . and c0(n) = L/2. To
obtain Eq. (28), the limit n≫ τ was not applied. Cle-
arly, the quantized Fourier amplitude cτ (n) (Eq. (24))
was obtained from Heisenberg-Schrödinger’s quantum
mechanics. Note: for a particle moving from right to
left we must take the negative sign in Eq. (27); the-
refore, the corresponding Heisenberg amplitude is the
complex conjugate of cτ (n) in Eq. (28). Similarly,
Eq. (20) was verified. In fact, ωn,n−τ = (En−En−τ )/~
was calculated from Eq. (23) using E(n) = En. Thus,
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in the limit n ≫ τ , the results were identical to those
of Eq. (25)

ωτ (n) = τ
4π2~
mL2

n
(
1− τ

2n

)
−→
n≫τ

τ
4π2~
mL2

n. (29)

4. Final notes

In some cases, the BSW quantization rule (Eq. (10))
may fail [20,21]; however, in the two problems conside-
red in the present study, this rule provides the correct
quantum mechanical energy values. A more flexible
formula that fixes problems associated with the BSW
rule is the Einstein-Brillouin-Keller (EBK) quantiza-
tion rule. For one-dimensional problems, this formula
presents the following form

1

2π

∮
dxmv(x) =

(
n+

µ

4

)
~, (30)

where n = 0, 1, 2, . . . and µ is the Maslov index [20,21].
This index is essentially “a detailed accounting of the
total phase loss during one period in units of π/2” [20].
In general, each classical turning point and each reflec-
tion gives one unit to µ. For example, for a confined
particle in a box, µ = 4 (because two turning points
and two hard reflections are observed). Alternatively,
for a particle in a transparent box, µ = 0 (because
there are no turning points or reflections). The latter
motion is pretty similar to that of a particle moving fre-
ely on a circle, which corresponds to the familiar plane
rigid rotator problem. Clearly, our results (Eq. (12)
and Eq. (23)) coincide with those provided by the
EBK quantization rule. To conclude, in the approxi-
mation n≫ τ , the classical-quantum results agree with
the exact quantum results. Nevertheless, the quantum-
classical calculations are easier to perform. Moreover,
the classical-quantum mechanical and exact quantum
energies perfectly match in both problems. Lastly, for
the particle in the open box, the quantized Fourier and
Heisenberg amplitudes are identical and independent
of n.
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ing on the entire real line, which is then permanently confined to a line segment or ‘a box’ (this
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are obtained where b.t. denotes a boundary term and f̂ is the external classical force operator for
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states to the Hamiltonian describing a particle-in-a-box with v(x) = 0 (⇒ f̂ = 0), the result that
the b.t. is equal to the mean value of the external classical force operator for the particle-in-an-
infinite-square-well-potential is obtained, i.e., d〈 p̂〉/dt is equal to 〈F̂〉. Moreover, the b.t. is written
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1. Introduction

The problem of a non-relativistic quantum particle with a mass of M moving in a square
well potential of finite (arbitrary) depth V0 and width a is one of the basic problems in
one-dimensional (1D) quantum mechanics [1,2]. Some time ago, Rokhsar considered this
problem as a starting model to verify Newton’s second law in mean values (or in Ehren-
fest’s version), d〈P̂〉/dt = 〈F̂〉, in the case in which the well is infinitely deep [3]. In fact,
the (external) classical force for a particle-in-a-finite-square-well-potential was explicitly
used in that reference. It was noted by Rokhsar that, in the approximation V0 � E
(where E is the energy of the particle), i.e., when the well depth becomes very large, the
matrix elements of the force do not always vanish, and these do not depend on V0. Hence
(through a pedagogical example), the equation d〈P̂〉/dt = 〈F̂〉 could be verified for a
particle constrained to move in the real line but walled in by two impenetrable barriers or
infinite potential walls. We have seen a similar treatment to that used in ref. [3] in a some-
what old book of solved problems in quantum mechanics [4]. In fact, problem 25(1) of
that reference proposed an estimate of the average force applied by the particle upon a wall
of the infinite square well, i.e., an infinitely high wall (the state of the particle being a sta-
tionary state). Very recently, we realized that the specific topic of the force exerted by the
walls of an infinite square well potential, and the Ehrenfest relations between expectation
values as related to wave packet revivals and fractional revivals, has also been treated [5].

The purpose of this paper is to examine and relate the topics of confinement, average
forces, and the Ehrenfest theorem for a particle in one spatial dimension. We consider two
specific cases or modes of confinement that we have identified: (i) A free particle moving
on the entire real line, which is then permanently confined to a line segment or ‘a box’
(this result is achieved by taking the limit V0 → ∞ in a finite well potential). We shall call
this case ‘a particle-in-an-infinite-square-well-potential’ (and its respective wave function
satisfies the ‘extended’ Dirichlet boundary condition ψ(x ≤ 0) = ψ(x ≥ a) = 0). (ii) A
free particle that has always been moving inside a box (in this case, an external potential
is not necessary to confine the particle; rather, it is confined by boundary conditions). We
shall call this case ‘a particle-in-a-box’, and one of the boundary conditions that the wave
function can satisfy is the Dirichlet boundary condition, u(x = 0) = u(x = a) = 0
(in relation to this case, we only consider this boundary condition in this paper). After
developing some basic results for the problem of a particle in a finite square well potential
(§2), we re-examine in detail the somewhat little known limiting procedure that allows us
to obtain the average force for the problem of the infinite square well potential from
the finite well potential problem (§3). We have certainly seen in some articles that the
eigenfunctions and eigenvalues of the infinite square well potential are obtained from the
eigenfunctions and eigenvalues of the finite well potential [3,6,7] (i.e., by explicitly taking
the limit V0 → ∞ in the latter V0-dependent quantities). Also, in §3, we derive a general
expression for the mean value of the external classical force operator for the particle-in-
an-infinite-square-well-potential, F̂ = −dV (x)/dx . This formula was written in terms
of the energy eigenvalues of the infinite square well potential (which are equal to those
for the particle-in-a-box). In this calculation, the state of the particle is zero everywhere,
but it is a combination of energy eigenstates of the Hamiltonian describing a particle-
in-a-box just inside the infinite square well potential. In §4, after calculating similar
general expressions of the mean value of the position (X̂ ) and momentum (P̂) operators,
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the Ehrenfest theorem for a particle-in-an-infinite-square-well-potential (i.e., d〈X̂〉/dt =
〈P̂〉/M and d〈P̂〉/dt = 〈F̂〉) is proven. In §5, we start out by presenting the formal
time derivatives of the mean values of the position (x̂) and momentum ( p̂) operators for
a particle-in-a-box. These derivatives present terms that are evaluated at the ends of the
box. Specifically, for the Dirichlet boundary condition we find that d〈x̂〉/dt = 〈 p̂〉/M ;
nevertheless, d〈 p̂〉/dt is equal to a boundary term plus 〈 f̂ 〉 (where f̂ = −dv(x)/dx is
the external classical force upon the particle inside the box). Hence, it appears that the
expected (or usual) Ehrenfest theorem is not entirely verified. However, by considering
a normalized complex general state that is a combination of energy eigenstates of the
Hamiltonian describing a particle-in-a-box, with v(x) = 0 (⇒ f̂ = 0), we obtain the
significant result that the boundary term for a particle-in-a-box is just equal to the mean
value of the external classical force operator for the particle-in-an-infinite-square-well-
potential, i.e., d〈 p̂〉/dt = 〈F̂〉. Moreover, that boundary term can be written as the average
value of a quantity, which we call a boundary quantum force, fB. Thus, the Ehrenfest
theorem for a particle-in-a-box is completed with the formula d〈 p̂〉/dt = 〈 fB〉. Note that,
throughout the article, we use capital letters to denote the operators in the particle-in-
an-infinite-square-well-potential problem, and lower-case letters in the particle-in-a-box
problem. Finally, we draw some conclusions in §6. We believe that the content and results
that follow should be enlightening to all those who are interested in the fundamental
aspects of quantum mechanics.

2. The finite square-well

Let us consider the following finite square-well (external) potential of depth V0:

V (x) = V0 [�(−x) + �(x − a)] , −∞ < x < +∞, (1)

where �(y) is the Heaviside step function. Note that V (x) = 0 for 0 < x < a and
V (x) = +V0 elsewhere (in the limit V0 → ∞, we obtain the infinite square well poten-
tial). Because the derivative of �(y) is the Dirac delta function (δ(y)), the external
classical force (or force operator) upon the particle (F̂ = F(x) = −dV (x)/dx) can
be written as follows:

F(x) = V0 [δ(x) − δ(x − a)] , −∞ < x < +∞. (2)

The most general solution of the (eigenvalue) Schrödinger equation Ĥφ(x) = εφ(x)

for energies V0 > ε > 0 can be written as follows:

φ(x) =
⎧
⎨

⎩

A exp(+κx),

B exp(+ikx) + C exp(−ikx),

D exp(−κx),

x ≤ 0,

0 ≤ x ≤ a,

x ≥ a,

(3)

where A, B, C and D are constants to be determined from the boundary conditions
imposed on φ(x) and its normalization. Moreover, κ = √

2M(V0 − ε)/� and k =√
2Mε/� are real-valued (and positive) quantities. The Hamiltonian operator

Ĥ = T̂ + V (x) = 1

2M
P̂2 + V (x) = − �2

2M

∂2

∂x2
+ V (x), (4)
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(where T̂ is the kinetic energy operator and P̂ = −i�∂/∂x is the momentum opera-
tor), describes a particle permanently living on the whole real line, R. This (self-adjoint)
operator (for a finite V0) is assumed to act on continuously differentiable functions
belonging (and their second derivatives) to the well-known space L2(R) [6]. Thus, any
eigenfunction of Ĥ , φ(x), and its derivative, φ′(x), must be continuous at x = 0 and
x = a. Therefore, at x = 0 we have φ(0−) = φ(0+) and φ′(0−) = φ′(0+) (where
φ(x±) ≡ limε→0φ(x ± ε), with ε > 0). By using these boundary conditions, we obtain
the following:

B = (κ + ik)

2ik
A,

C = (−κ + ik)

2ik
A,

⇒ − B

C
= κ + ik

κ − ik
. (5)

Also, at x = a we have φ(a−) = φ(a+) and φ′(a−) = φ′(a+). By using these boundary
conditions, we obtain the following:

B = (−κ + ik)

2ik
exp(−κa) exp(−ika)D,

C = (κ + ik)

2ik
exp(−κa) exp(ika)D,

⇒ − B

C
exp(2ika) = κ − ik

κ + ik
.

(6)

Substituting eq. (5) into eq. (6), we obtain the formula that gives us the possible (discrete)
eigenvalues of Ĥ (i.e., the spectral equation for the bound states):

(
κ − ik

κ + ik

)2

= exp(2ika). (7)

Let us first consider the case in which the solution of eq. (7) is given by the following
equation:

κ − ik

κ + ik
= − exp(ika) ⇒ tan

(
ka

2

)

= κ

k
. (8)

From the definitions given in the beginning for κ and k, we can write the following
formula:

κ2 + k2 = k2
0, (9)

where k0 = √
2MV0/�. Now, by substituting eq. (8) into eq. (9), we obtain the following:

cos2

(
ka

2

)

=
(

k

k0

)2

⇒
∣
∣
∣
∣ cos

(
ka

2

)∣
∣
∣
∣ = k

k0
. (10)

The first set of numerical values for the allowed energies is obtained from the transcen-
dental equation (10). For example, this equation can be solved graphically by intersecting
a straight line with a slope of 1/(k0a) with the absolute value of the cosine of the half-
angle (by considering ka as the independent variable). Note that these values depend
on the depth of the well. The respective eigenfunctions are obtained, for example, by
expressing the constants B, C , and D in φ(x) (eq. (3)) in terms of A. In fact, the con-
stant B as a function of A (B(A)) is one of the equations in (5). Likewise, by using the
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second result in eq. (5) (B(C)) and the first result in eq. (8), we first obtain the relation
C = exp(ika)B; then, by using B(A), we can write C = (κ + ik) exp(ika)A/2ik. To
express D in terms of A, we first substitute exp(ika) (obtained from the first result in eq.
(8)) into ‘B vs. D’ given in eq. (6). Then, by eliminating the constant B with B(A) we
finally obtain D = exp(κa)A. Now, we can write φ(x) as follows:

φ(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A exp(+κx),

A

(
κ + ik

2ik

)

{exp(+ikx) + exp[−ik(x − a)]} ,

A exp[−κ(x − a)] ,

x ≤ 0,

0 ≤ x ≤ a,

x ≥ a,

(11)

where the remaining constant A is determined by normalization. Note that these eigen-
functions satisfy the relation φ(0) = φ(a). Therefore, the respective probability density,
ρ(x) = |φ(x)|2, verifies ρ(0) = ρ(a). In fact, we can define space-shifted eigenfunc-
tions, φ̃(x) ≡ φ(u), where u ≡ x + (a/2), which verify φ̃(x) = φ̃(−x), i.e., they are
positive-parity states.

Let us now consider the case in which the solution of eq. (7) is given by the following
equation:

κ − ik

κ + ik
= exp(ika) ⇒ tan

(
ka

2

)

= − k

κ
. (12)

By substituting eq. (12) into eq. (9), we obtain the following:

sin2

(
ka

2

)

=
(

k

k0

)2

⇒
∣
∣
∣
∣ sin

(
ka

2

)∣
∣
∣
∣ = k

k0
. (13)

This transcendental equation gives us the second set of eigenvalues of the Hamiltonian in
eq. (4). The respective eigenfunctions are obtained analogously to the previous case, but
now eq. (12) is used instead of eq. (8). The result is the following:

φ(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A exp(+κx),

A

(
κ + ik

2ik

)

{exp(+ikx) − exp[−ik(x − a)]} ,

− A exp [−κ(x − a)] ,

x ≤ 0,

0 ≤ x ≤ a,

x ≥ a.

(14)

Note that these eigenfunctions satisfy the relation φ(0) = −φ(a). Hence, the probability
density verifies ρ(0) = ρ(a) again. Moreover, the space-shifted eigenfunctions (φ̃(x))
verify φ̃(x) = −φ̃(−x), i.e., they are negative-parity states. If one calculates the mean
value of the operator F̂ (eq. (2)) in any stationary state φ(x), the result is always zero. In
effect, the following equation can be written:

〈F̂〉φ = 〈φ, F̂φ〉 =
∫ +∞

−∞
dx F(x) |φ(x)|2 = −V0 [ρ(a) − ρ(0)] = 0. (15)
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3. The infinite well depth limit

In the limit V0 → ∞, the finite square well becomes an infinite square well. The
eigenvalues of the Hamiltonian operator (eq. (4)) in the potential

V (x) = lim
V0→∞ V0 [�(−x) + �(x − a)] , −∞ < x < +∞, (16)

are obtained from eqs (10) and (13). By using the definitions for k and k0, we obtain the
following results, respectively:

∣
∣
∣
∣ cos

(
ka

2

)∣
∣
∣
∣ = k

k0
=

√
ε

V0
→ 0 ⇒ k → π

a
,

3π

a
,

5π

a
, . . . ,

∣
∣
∣
∣ sin

(
ka

2

)∣
∣
∣
∣ = k

k0
=

√
ε

V0
→ 0 ⇒ k → 2π

a
,

4π

a
,

6π

a
, . . . .

Therefore,

k → nπ

a
≡ Kn ⇒ ε → �2

2M

(nπ

a

)2 ≡ En, n = 1, 2, 3, . . . . (17)

Note that the corresponding eigenfunctions for odd (even) n are obtained from the solution
given in eq. (11) (eq. (14)). Clearly, in the limit V0 → ∞, all the eigenfunctions verify the
result φ(x) → 0 ≡ ψn(x) for x ≤ 0 and x ≥ a (this is true because 1/κ ≈ �/

√
2MV0 →

0). In order to obtain φ(x) inside the (infinite) well (i.e., ψn(x)), we need to use the
following two results:

exp(ika) = ∓
(

κ − ik

κ + ik

)

≈ ∓
(√

V0 − i
√

ε√
V0 + i

√
ε

)

→ ∓1,

where the minus (plus) sign applies to the solution given in eq. (11) (eq. (14)), and

κ + ik

2ik
≈ 1

2i

√
V0

ε
.

Throughout this paper, we use the approximation sign ‘≈’ in any expression in which
V0 � ε. By substituting these results into φ(x) for the interval 0 ≤ x ≤ a (see eqs (11)
and (14)), with k → nπ/a and ε → En , we obtain the following equation:

φ(x) ≡ φn(x) ≈ A

√
V0

En
sin

(nπx

a

)
, n = 1, 2, 3, . . . , 0 ≤ x ≤ a. (18)

Because V0 � ε, there is practically no contribution from the regions outside the well to
the normalization. Thus, we can write the following (with A ∈ R):

1 = lim
V0→∞

∫ +∞

−∞
dx |φn(x)|2 = lim

V0→∞

∫ a

0
dx |φn(x)|2

≈ A2 V0

En

∫ a

0
dx sin2

(nπx

a

)
.
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By integrating, we obtain the following equation:

A ≈
√

2

a

√
En

V0
. (19)

If we substitute this result into eq. (18), we arrive at the usual result:

φn(x) ≈
√

2

a

√
En

V0

√
V0

En
sin

(nπx

a

)
,

⇒ ψn(x) = lim
V0→∞ φn(x) =

√
2

a
sin

(nπx

a

)
, n = 1, 2, 3, . . . . (20)

Note that this result is independent of V0 at the end, i.e., even before explicitly taking the
limit of V0 → ∞. Summing up, the eigenfunctions of the Hamiltonian Ĥ (eq. (4)) with
the infinite square well potential (eq. (16)) can be written as follows:

ψn(x) =
√

2

a
sin

(nπx

a

)
[�(x) − �(x − a)] , n = 1, 2, 3, . . . , (21)

where x ∈ (−∞,+∞). Moreover, they satisfy the ‘extended’ Dirichlet boundary con-
dition ψn(x ≤ 0) = ψn(x ≥ a) = 0. We would like to stress that, precisely because
of this boundary condition, the operator Ĥ can be considered equivalent to a non-self-
adjoint kinetic energy operator T̂ (see eq. (4)) acting on functions ψ(x) ∈ L2(R) with
(T̂ ψ)(x) ∈ L2(R) and verifying the somewhat strong boundary condition ψ(x ≤ 0) =
ψ(x ≥ a) = 0 [8].

The procedure we have used to obtain ψn(x), although correct, does not give us directly
the approximate value that the eigenfunctions assume for x = 0− and x = a+ as func-
tions of V0 (when V0 � ε). We can solve this issue by introducing a new constant A′,
which is related to A as follows (observe the solutions in eqs (11) and (14)):

A = k

κ + ik
A′. (22)

By substituting eq. (22) into eqs (11) and (14) and using the result A ≈ √
En/V0 A′, we

obtain the following result:

φ(x) ≡ φn(x) ≈

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A′
√

En

V0
exp(+κx), x ≤ 0,

A′ 1

2i
{exp(+i Kn x) ± exp[−i Kn(x − a)]} , 0 ≤ x ≤ a,

± A′
√

En

V0
exp[−κ(x − a)] , x ≥ a,

(23)

where the upper (lower) sign applies to the solution given in eq. (11) (eq. (14)). Moreover,
κ ≈ √

2MV0/� and exp(i Kna) = ∓1. Clearly, from (23), we have that φn(x) → 0 ≡
ψn(x) for x /∈ (0, a) and ψn(x) = A′ sin (nπx/a) for x ∈ [0, a], where A′ = √

2/a. This
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result is consistent with the result given in eq. (21). Nevertheless (from (23)), we can also
write the results as follows:

φn(0) ≈
√

2

a

√
En

V0
, φn(a) ≈ (−1)n+1

√
2

a

√
En

V0
, n = 1, 2, 3, . . . . (24)

Therefore, the respective stationary-state probability density, ρn(x) = |φn(x)|2, satisfies
the periodic boundary condition:

ρn(0) = ρn(a) ≈ 2

a

En

V0
, n = 1, 2, 3, . . . . (25)

As a consequence, the mean value of the force operator is zero (see expression (15)).
However, it is also important to note that 〈F̂〉ψn = 〈ψn, F̂ψn〉 is really independent of V0

(which is valid when V0 tends to infinity). In effect, if we substitute the relations given in
eq. (25) into eq. (15), we obtain the following:

〈F̂〉ψn = lim
V0→∞ −V0 [ρn(a) − ρn(0)] = lim

V0→∞ −V0

(
2

a

En

V0
− 2

a

En

V0

)

= −
(

2

a
En − 2

a
En

)

= 0 , n = 1, 2, 3, . . . . (26)

This result also tells us that the average force encountered by the particle when it hits the
(infinite) wall at x = 0 is +2En/a, and at x = a it is −2En/a (which is precisely the
result obtained in ref. [4]).

In order to procure a non-trivial mean value of the force operator, let us consider a
normalized complex general state � = �(x, t) of the following form:

�(x, t) =
∑

n=1

An ψn(x) exp

(

−i
En

�
t

)

, −∞ < x < +∞, (27)

where ψn(x) is given by eq. (21). Moreover, we have
∑

n=1 |An|2 = 1 because ‖�‖2 ≡
〈�,�〉 = 1 (for all t). By substituting eq. (21) into eq. (27), we can also write the
following result:

�(x, t) =
∑

n=1

Anun(x) exp

(

−i
En

�
t

)

[�(x) − �(x − a)] , (28)

where x ∈ (−∞,+∞) and the functions un(x) are given by the following expression:

un(x) =
√

2

a
sin

(nπx

a

)
, n = 1, 2, 3, . . . . (29)

Clearly, in the region 0 ≤ x ≤ a, i.e., just inside the infinite well (the box), un(x)

coincides with ψn(x). The Hamiltonian for a (free) particle permanently confined to a box
is simply ĥ ≡ T̂ (see eq. (4)), and it acts (essentially) on functions u(x) ∈ L2([0, a]) such
that (ĥu)(x) is also in L2([0, a]) but obeying the Dirichlet boundary condition, u(0) =
u(a) = 0. The normalized eigenfunctions to ĥ are precisely the functions un(x), and its
eigenvalues are the same as those of Ĥ (see eq. (17)).
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The mean value of the force operator at time t in the general state given in eq. (27),
〈F̂〉� = 〈�, F̂�〉, can be written as follows:

〈F̂〉� =
∑

n,m=1

A∗
n Am (F̂)n,m exp

[

i
(En − Em)

�
t

]

, (30)

where the matrix elements of F̂ , (F̂)n,m = 〈ψn, F̂ψm〉 = ∫ +∞
−∞ dx ψ∗

n (x)F(x)ψm(x), are
given by the following equation (see eq. (2)):

(F̂)n,m = lim
V0→∞ −V0

[
φ∗

n (a)φm(a) − φ∗
n (0)φm(0)

]
. (31)

Substituting the results given in eq. (24) into eq. (31), we obtain the following formula:

(F̂)n,m = lim
V0→∞ −V0

[

(−1)n+m 2

a

√
En Em

V0
− 2

a

√
En Em

V0

]

= −2

a

√
En Em

[
(−1)n+m − 1

]
. (32)

This result confirms that these matrix elements are really independent of V0 (in the limit
V0 → ∞) [3]. Moreover, they do not vanish when n is even (odd) and m is odd (even).
Substituting the formula for (F̂)n,m given in eq. (32) into eq. (30), we can write a general
expression for the average value of the operator F̂ :

〈F̂〉� = −2

a

∑

n,m=1

A∗
n Am

√
En Em

[
(−1)n+m − 1

]
exp

[

i
(En − Em)

�
t

]

. (33)

Importantly, 〈F̂〉�∈L2(R) is valid in the limit as V0 approaches infinity. Thus, this result
should also be formally equal to the mean value of a boundary quantum force (for
example, fB) but employing functions u ∈ L2([0, a]) that obey the Dirichlet boundary
condition, u(0) = u(a) = 0. It is clear that fB cannot be simply written as the derivative
of the external potential inside the box (0 ≤ x ≤ a) because this potential may be zero.
However, the mean value of fB (in a state u ∈ L2([0, a])) does not vanish. We return to
this point in §5.

4. Ehrenfest’s theorem for a particle-in-an-infinite-square-well-potential

Now we show that the mean values of the position (X̂ = x) and momentum (P̂ =
−i�∂/∂x) operators at time t for the state � that we used before to calculate the average
force have the expected relationship. First, the expectation value of the position operator
is the following:

〈X̂〉� =
∑

n,m=1

A∗
n Am(X̂)n,m exp

[

i
(En − Em)

�
t

]

, (34)

where the matrix elements of X̂ , (X̂)n,m = 〈ψn, X̂ψm〉 = ∫ +∞
−∞ dx ψ∗

n (x)xψm(x), i.e.,

(X̂)n,m = ∫ a
0 dx u∗

n(x)xum(x), are given by the following expression:

(X̂)n,m =

⎧
⎪⎪⎨

⎪⎪⎩

a

2
,

2�2

Ma

√
En Em

(En − Em)2

[
(−1)n+m − 1

]
,

n = m,

n �= m.
(35)
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Then, we can write a general expression for the average value of the operator X̂ :

〈X̂〉� = a

2
+ 2�2

Ma

∑

n �=m=1

A∗
n Am

√
En Em

(En − Em)2

[
(−1)n+m − 1

]

× exp

[

i
(En − Em)

�
t

]

, (36)

where the latter summation sign means
∑

n=1

∑
m=1 with n �= m. Likewise, the expec-

tation value of the momentum operator is as follows:

〈P̂〉� =
∑

n,m=1

A∗
n Am(P̂)n,m exp

[

i
(En − Em)

�
t

]

, (37)

where the matrix elements of P̂ , (P̂)n,m = 〈ψn, P̂ψm〉 = −i�
∫ +∞
−∞ dx ψ∗

n (x) ψ ′
m(x), i.e.,

(P̂)n,m = −i�
∫ a

0 dx u∗
n(x)u′

m(x), are given by the following expression:

(P̂)n,m =

⎧
⎪⎨

⎪⎩

0,

i
2�
a

√
En Em

En − Em

[
(−1)n+m − 1

]
,

n = m,

n �= m.
(38)

Thus, we obtain a general expression for the average value of the operator P̂:

〈P̂〉� = i
2�
a

∑

n �=m=1

A∗
n Am

√
En Em

En − Em

[
(−1)n+m − 1

]
exp

[

i
(En − Em)

�
t

]

.

(39)

Note that these two (Hermitian) operators act on functions in L2(R) that are different
from zero in the (open) interval (0, a) (although, of course, these functions may have
nodes there).

It readily follows from eqs (36) and (39) that

d

dt
〈X̂〉� = 1

M
〈P̂〉�, (40)

and, considering eq. (33), we arrive at the desired result:

d

dt
〈P̂〉� = 〈F̂〉�. (41)

Thus, the Ehrenfest theorem for a particle-in-an-infinite-square-well potential has been
explicitly confirmed for the general state given in eq. (27), which belongs to L2(R).

5. Ehrenfest’s theorem for a particle-in-a-box

In this section, we begin by presenting the formal time derivatives of the mean value of the
position (x̂ = x) and momentum ( p̂ = −i�∂/∂x) operators for a particle-in-a-box. Actu-
ally, the formal calculation of these derivatives for a particle moving in the entire real line
leads us to the Ehrenfest theorem [9,10] (provided that the state and its derivative vanish

806 Pramana – J. Phys., Vol. 80, No. 5, May 2013



Confinement, average forces, and the Ehrenfest theorem

at infinity). However, for a particle-in-a-box (x ∈ [0, a] ≡ ), the quantities d〈x̂〉/dt and
d〈 p̂〉/dt do not always satisfy this theorem. In fact, certain boundary terms (that are not
necessarily zero) arise in the formal calculation of these derivatives. Naturally, there is a
large variety of boundary conditions that can be imposed in this case, one of them is the
Dirichlet boundary condition.

In the (standard) textbooks demonstration of the Ehrenfest theorem, one commonly
notes the presence of the commutators [ĥ, x̂] and [ĥ, p̂], where ĥ is the Hamiltonian.
Indeed, the formal evaluation of the mean values of these quantities always leads to the
Ehrenfest theorem. However, to be strict, the writing of these commutators may be mean-
ingless (especially for the particle-in-a-box problem) unless a proper analysis related to
the domains of the involved operators (and their compositions) is made. To examine some
of the difficulties that may arise, as well as the weak points of the formal argument, refs
[11–14] can be consulted (ref. [12], which was recently discovered by the present author,
is particularly important). For a rigorous mathematical derivation of the Ehrenfest theo-
rem (under some not-too-stringent assumptions), see ref. [15]. For a more general (and
rigorous) derivation, see ref. [16]. Recently, we have presented a new, pertinent, strictly
formal study of this problem in which the boundary terms present in the derivatives of 〈x̂〉
and 〈 p̂〉 are also written only in terms of the probability density, its spatial derivative, the
probability current density, and the external potential [17].

Let ô be a time-independent operator (such as x̂ or p̂). The time derivative of its
mean value 〈ô〉u = 〈u, ôu〉 in the normalized state u = u(x, t) (⇒ u ∈ L2()), which
evolves in time according to the Schrödinger equation ∂u/∂t = −i ĥu/� (the Hamiltonian
operator is

ĥ = − �2

2M

∂2

∂x2
+ v(x), (42)

and v(x) is the external potential inside the box), can be calculated as follows:

d

dt
〈ô〉u =

〈
∂u

∂t
, ôu

〉

+
〈

u, ô
∂u

∂t

〉

= i

�
〈ĥu, ôu〉 − i

�
〈u, ôĥu〉

= i

�

(
〈ĥu, ôu〉 − 〈u, ĥôu〉

)
+ i

�
〈u, [ĥ, ô]u〉, (43)

where [ĥ, ô] = ĥô − ôĥ, as usual. When ô = x̂ , we can write

〈ĥu, x̂u〉 − 〈u, ĥ x̂u〉 =
[

− �2

2M

∫



dx x
∂2u∗

∂x2
u +

∫



dx xvu∗u

]

−
[

− �2

2M

∫



dx u∗ ∂2

∂x2
(xu) +

∫



dx xvu∗u

]

.

By developing this expression and using the relation

∂2u∗

∂x2
u − u∗ ∂2u

∂x2
= ∂

∂x

(
∂u∗

∂x
u − u∗ ∂u

∂x

)

,

we obtain [13,17]

〈ĥu, x̂u〉 − 〈u, ĥ x̂u〉 = − �2

2M

[

x

(
∂u∗

∂x
u − u∗ ∂u

∂x

)

− u∗u

]∣
∣
∣
∣

a

0

. (44)
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Moreover,

〈u, [ĥ, x̂]u〉 = − �2

2M

∫



dx u∗ ∂2

∂x2
(xu) + �2

2M

∫



dx xu∗ ∂2u

∂x2
.

By developing this expression, we obtain

〈u, [ĥ, x̂]u〉 = − i�
M

〈 p̂〉u . (45)

For the particle-in-a-box, we take v(x) = 0 and the Dirichlet boundary condition,
u(0, t) = u(a, t) = 0. The latter implies that the boundary term in (44) is zero. It
should be noted that with this boundary condition, in addition to x̂ , the operators p̂ and
ĥ are Hermitian (although ĥ is also self-adjoint) [14,17]. After substituting eqs (44) and
(45) into eq. (43) (with ô = x̂), we obtain the expected result:

d

dt
〈x̂〉u = 1

M
〈 p̂〉u . (46)

Likewise, when ô = p̂, we can write

〈ĥu, p̂u〉 − 〈u, ĥ p̂u〉 =
[

i�
�2

2M

∫



dx
∂2u∗

∂x2

∂u

∂x
− i�

∫



dx vu∗ ∂u

∂x

]

−
[

i�
�2

2M

∫



dx u∗ ∂2

∂x2

(
∂u

∂x

)

− i�
∫



dx vu∗ ∂u

∂x

]

.

By integrating by parts the first integral in 〈u, ĥ p̂u〉, we obtain the result [13,17]:

〈ĥu, p̂u〉 − 〈u, ĥ p̂u〉 = i�
�2

2M

(
∂u∗

∂x

∂u

∂x
−u∗ ∂2u

∂x2

)∣
∣
∣
∣

a

0

. (47)

Moreover,

〈u, [ĥ, p̂]u〉 = −i�
�2

2M

∫



dx u∗ ∂

∂x

(
∂2u

∂x2

)

+ i�
∫



dx u∗ ∂

∂x
(vu) .

By developing the derivative in the last integral above and simplifying, we obtain the
result:

〈u, [ĥ, p̂]u〉 = i�
〈

dv

dx

〉

u

= −i�〈 f̂ 〉u, (48)

where f̂ = −dv(x)/dx is the external classical force upon the particle inside the box. By
substituting eqs (47) and (48) into eq. (43) (with ô = p̂) and after imposing v(x) = 0
(⇒ f̂ = 0), and the Dirichlet boundary condition, we obtain the following result:

d

dt
〈 p̂〉u = − �2

2M

∣
∣
∣
∣
∂u

∂x

∣
∣
∣
∣

2
∣
∣
∣
∣
∣

a

0

. (49)

Note that the right-hand side of eq. (49) can be written as the mean value of the quantum
force (the latter is a non-local quantity in the sense that it is not a given function of the
coordinates, but is dependent of the total quantum state of the system)

fB = fB(x, t) ≡ − �2

2M

1

|u|2
∂

∂x

∣
∣
∣
∣
∂u

∂x

∣
∣
∣
∣

2

, (50)
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in the normalized state u ∈ L2(), which satisfies the Dirichlet boundary condition.
This is so because, 〈 fB〉u = ∫


dx fB(x, t) |u(x, t)|2. Hence, 〈 fB〉u is always equal to a

boundary term and fB can be considered a boundary quantum force. Thus, in this case,
the Ehrenfest theorem consists of eq. (46) and the following expression:

d

dt
〈 p̂〉u = 〈 fB〉u . (51)

Note that for a particle-in-an-infinite-square-well-potential (u → �, 0 → −∞, a →
+∞), the boundary term in (47) is zero, i.e., 〈 fB〉� = 0. In fact, in the open interval
 = (−∞,+∞), � and its derivative ∂�/∂x tend to zero for x → ±∞.

If we consider a (normalized) complex general state u = u(x, t) of the form

u(x, t) =
∑

n=1

An un(x) exp

(

−i
En

�
t

)

, 0 ≤ x ≤ a, (52)

where the eigenfunctions un(x) are given in eq. (29), then the general state �(x, t) in
eq. (27) can be written as follows:

�(x, t) = u(x, t) [�(x) − �(x − a)] . (53)

Therefore, the mean values calculated above for a particle-in-an-infinite-square-well-
potential (§4), 〈X̂〉� and 〈P̂〉� , are equal to 〈x̂〉u and 〈 p̂〉u , respectively. Hence, eqs
(40) and (46) are fully equivalent. Likewise, the mean value 〈 fB〉u at time t in the general
state given in eq. (52) can be obtained simply by substituting the latter solution into the
right-hand side of eq. (49). In this way we obtain the following result:

〈 fB〉u = −2

a

∑

n,m=1

A∗
n Am

√
En Em

[
(−1)n+m − 1

]
exp

[

i
(En − Em)

�
t

]

, (54)

which precisely coincides with the mean value 〈F̂〉� given in eq. (33) for a particle-in-
an-infinite-square-well-potential. This is a significant result of the present paper. Thus,
eqs (41) and (51) are also equivalent, i.e., they give the same results, although these are
not the same problems.

6. Conclusions

To summarize, we have investigated the equations of motion for the mean values of the
position and momentum operators (Ehrenfest’s theorem) and the average forces for a par-
ticle (ultimately) confined in one spatial dimension. We have noted two ways to achieve
the confinement in a finite region: one of these leads us to the particle-in-an-infinite-
square-well-potential and the other to the particle-in-a-box. In the former case, we nec-
essarily have the Dirichlet boundary condition at the boundaries of the region, but in the
latter case this boundary condition is just one more condition. In fact, there are an infinite
number of boundary conditions for a quantum particle-in-a-box. For example, we have a
one-parameter family of boundary conditions for the self-adjoint operator p̂ [6], and some
further conditions arise (as the Dirichlet boundary condition) if p̂ is only a Hermitian op-
erator. Likewise, we have a four-parameter family of boundary conditions for the self-adjoint
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operator ĥ [6]. Moreover, the (relevant) force for a particle-in-an-infinite-square-well-
potential, f̂ , is not the same (pertinent) force as that for a particle-in-a-box with the
Dirichlet boundary condition, fB. In fact, the mean value of fB depends only on the value
of the first derivative of the wave function (more specifically, on its modulus squared) at
the boundary. However, in both cases, the particle can only move between the impene-
trable barriers located at the points x = 0 and x = a. Finally, and most importantly, in
each case we have an Ehrenfest theorem that makes sense. We really hope that our article
will be of interest to all those who are interested in the fundamental aspects of quantum
mechanics.
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The formula that follows Eq. (47) was incorrectly written:

hu; [ĥ; p̂]ui = �i~ ~
2

2M

Z


dxu�

@

@x

�
@2u

@x2

�
+ i~

Z


dxu�

@

@x
(vu):

This formula must be written as follows:

hu; [ĥ; p̂]ui = hĥp̂i � i~ ~
2

2M

Z


dxu�

@

@x

�
@2u

@x2

�
+ i~

Z


dxu�

@

@x
(vu):

That�s all!

Salvatore De Vincenzo.
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On time derivatives for ⟨x̂⟩ and ⟨p̂⟩: formal 1D calculations
(Sobre as derivadas com respeito ao tempo para ⟨x̂⟩ e ⟨p̂⟩: cálculos formais em 1D)

Salvatore De Vincenzo1

Escuela de F́ısica, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
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We present formal 1D calculations of the time derivatives of the mean values of the position (x̂) and momen-
tum (p̂) operators in the coordinate representation. We call these calculations formal because we do not care for
the appropriate class of functions on which the involved (self-adjoint) operators and some of its products must
act. Throughout the paper, we examine and discuss in detail the conditions under which two pairs of relations
involving these derivatives (which have been previously published) can be formally equivalent. We show that
the boundary terms present in d⟨x̂⟩/dt and d⟨p̂⟩/dt can be written so that they only depend on the values taken
there by the probability density, its spatial derivative, the probability current density and the external potential
V = V (x). We also show that d⟨p̂⟩/dt is equal to −⟨dV/dx⟩+ ⟨fQ⟩ plus a boundary term (fQ = −∂Q/∂x is the
quantum force and Q is the Bohm’s quantum potential). We verify that ⟨fQ⟩ is simply obtained by evaluating
a certain quantity on each end of the interval containing the particle and by subtracting the two results. That
quantity is precisely proportional to the integrand of the so-called Fisher information in some particular cases.
We have noted that fQ has a significant role in situations in which the particle is confined to a region, even if V
is zero inside that region.
Keywords: quantum mechanics, Schrödinger equation, probability density, probability density current, Bohm’s
quantum potential, quantum force.

Apresentamos cálculos formais em 1D das derivadas com respeito ao tempo dos valores médios dos operado-
res da posição (x̂) e do momento linear (p̂) na representação de coordenadas. Chamamos esses cálculos formais
porque não nos preocupamos com o tipo apropriado de funções sobre as quais devem atuar os operadores (auto-
adjuntos) envolvidos e alguns de seus produtos. Ao longo do artigo, examinamos e discutimos em detalhe as
condições em que dois pares de relações que envolvem essas derivadas (que foram previamente publicadas) podem
ser formalmente equivalentes. Mostramos que os termos de fronteira presentes em d⟨x̂⟩/dt e d⟨p̂⟩/dt podem ser
escritos de modo que eles só dependem dos valores áı tomados pela densidade de probabilidade, sua derivada
espacial, a densidade de corrente de probabilidade e do potencial externo V = V (x). Também mostramos que
d⟨p̂⟩/dt é igual a −⟨dV/dx⟩+⟨fQ⟩ mais um termo de fronteira (fQ = −∂Q/∂x é a força quântica e Q é o potencial
quântico de Bohm). Verificamos que ⟨fQ⟩ é obtido simplesmente através do cálculo de uma certa quantidade em
cada extremidade do intervalo contendo a part́ıcula e subtraindo os dois resultados. Em alguns casos particulares
essa quantidade é justamente proporcional ao integrando da assim chamada informação de Fisher. Notamos que
fQ tem um papel significativo em situações em que a part́ıcula é confinada a uma região, mesmo se V é zero
dentro dessa região.
Palavras-chave: mecânica quântica, equação de Schrödinger, densidade de probabilidade, densidade de cor-
rente de probabilidade, potencial quântico de Bohm, força quântica.

1. Introduction

Almost any book on quantum mechanics states that
the mean values of the position and momentum opera-
tors (⟨x̂⟩t and ⟨p̂⟩t) satisfy, in a certain sense, the same
equations of motion that the classical position and mo-
mentum (x = x(t) and p = p(t)) satisfy. This result,
which establishes a clear correspondence between the
classical and quantum dynamics is the Ehrenfest theo-

rem [1,2]:

d

dt
⟨x̂⟩ = i

~
⟨[Ĥ, x̂]⟩ = 1

m
⟨p̂⟩, (1)

d

dt
⟨p̂⟩ = i

~
⟨[Ĥ, p̂]⟩ = ⟨f̂⟩. (2)

Note that Eq. (2) contains the average value of the

external classical force operator f̂ = f(x) = −dV/dx,
1E-mail: salvatore.devincenzo@ucv.ve.
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rather than the own force evaluated at x = ⟨x̂⟩. As a re-
sult, we are clarifying the statement preceding Eq. (1).

When trying to prove Ehrenfest’s theorem in a rigo-
rous way, the difficulty arises that each of the operators
involved (x̂, p̂ and Ĥ, which must be preferably self-
adjoint) has its own domain, and some plausible com-
mon domain must be found in which Eq. (1) and/or
Eq. (2) are/is valid, which is a non-trivial and compli-
cated matter. To review some of the difficulties that
may arise, as well as certain aspects of these domains,
Refs. [3–6] can be consulted (Ref. [4], which was re-
cently discovered by the present author, is especially
important). For a rigorous mathematical derivation
of the Ehrenfest equations (which does not use overly
stringent assumptions), see Ref. [7]. For a more gene-
ral (and rigorous) derivation, see Ref. [8]. For a nice
treatment of this theorem (specifically, for the problem
of a particle-in-a-box) that is based on the use of the
classical force operator for a particle in a finite square
well potential, which then becomes infinitely deep (ef-
fectively confining the particle to a box), see Ref. [9].
For a study of the force exerted by the walls of an infi-
nite square well potential, and the Ehrenfest relations
between expectation values as related to wave packet
revivals and fractional revivals, see Ref. [10].

The usual formal (or heuristic) demonstration in
textbooks of Eqs. (1) and (2) in the coordinate re-
presentation with x ∈ (−∞,+∞) appears to have no
problem; however, it is known that the quantities ⟨x̂⟩
and ⟨p̂⟩ with x ∈ Ω = [a, b] (where Ω is a finite inter-
val) do not always obey the Ehrenfest theorem [3, 6].
This problem occurs because boundary terms that are
not necessarily zero arise in the formal calculation of
the time derivatives of ⟨x̂⟩ and ⟨p̂⟩. To verify this re-
sult in this article, we carefully reexamine the formal
traditional approach to the Ehrenfest theorem in the
coordinate representation from the beginning. Hence,
we do not consider the domains of the involved (self-
adjoint) operators. Specifically, in this article, we do
not care for the appropriate class of functions on which
these operators and some of its products must act. In
our study, the notion of self-adjointness of an operator
(or strict self-adjointness) is essentially replaced by the
hermiticity (or formal self-adjointness), which is known
to be less restrictive. We believe that a formal study
of this problem alone is worthy and pertinent; in fact,
the strict considerations related to the domains of the
involved operators and their compositions seem to be
too demanding. In our paper, we also examine and
discuss in detail the conditions under which two pairs
of relations involving d⟨x̂⟩/dt and d⟨p̂⟩/dt (which were
published in Refs. [5, 6]) can be formally equivalent.

We start with the position and momentum opera-
tors, x̂ = x and p̂ = −i~∂/∂x, for a non-relativistic
quantum particle moving in the region x ∈ Ω (which
may be finite or infinite). The inner product for the
functions Ψ = Ψ(x, t) and Φ = Φ(x, t) (belonging at le-

ast to the Hilbert space L2(Ω), and on which x̂ and
p̂ act) is ⟨Ψ,Φ⟩ =

∫
Ω
Ψ̄Φ, where the bar represents

complex conjugation. The corresponding mean values
of these operators in the (complex) normalized state

Ψ = Ψ(x, t) (∥Ψ∥2 ≡ ⟨Ψ,Ψ⟩ = 1) are as follows

⟨x̂⟩ ≡ ⟨Ψ, x̂Ψ⟩ =
∫
Ω

dxx Ψ̄Ψ, (3)

⟨p̂⟩ ≡ ⟨Ψ, p̂Ψ⟩ = −i~
∫
Ω

dx Ψ̄
∂Ψ

∂x
. (4)

The operator x̂ is hermitian because it automatically
satisfies the following relation

⟨Ψ, x̂Φ⟩ − ⟨x̂Ψ,Φ⟩ = 0, (5)

where Ψ and Φ are functions belonging to L2(Ω). The
time derivative of expressions (3) and (4) leads us to
the following relations

d

dt
⟨x̂⟩ =

∫
Ω

dxx
∂

∂t

(
Ψ̄Ψ

)
=

∫
Ω

dxx

(
∂Ψ̄

∂t
Ψ+ Ψ̄

∂Ψ

∂t

)
(6)

and
d

dt
⟨p̂⟩ = −i~

∫
Ω

dx
∂

∂t

(
Ψ̄
∂Ψ

∂x

)
= −i~

∫
Ω

dx

[
∂Ψ̄

∂t

∂Ψ

∂x
+ Ψ̄

∂

∂x

(
∂Ψ

∂t

)]
. (7)

In the last expression, we have used the commutativity
of the operators ∂/∂x and ∂/∂t.

In non-relativistic quantum mechanics, the wave
function Ψ evolves in time according to the Schrödinger
equation

i~
∂

∂t
Ψ = ĤΨ =

(
− ~2

2m

∂2

∂x2
+ V

)
Ψ, (8)

where Ĥ is the Hamiltonian operator of the system and
V = V (x) is the (real) external classical potential. By
substituting in Eqs. (6) and (7) the time derivatives of
Ψ and Ψ̄ (which are obtained from Eq. (8) and its com-
plex conjugate), we obtain d ⟨x̂⟩ /dt and d ⟨p̂⟩ /dt. As
will be discussed in the next two sections, these deriva-
tives always have terms that are evaluated at the ends
of the interval Ω. However, if these derivatives must
be real-valued, certain mathematical conditions (which
are, of course, physically justified) should be imposed
on the boundary terms. We will show that these boun-
dary terms can be written so that they can only depend
on the values taken by the probability density, its spa-
tial derivative, the probability current density and the
external potential V at the boundary.

2. Time derivatives for ⟨x̂⟩

For example, the time derivative of the average value
of x̂ specifically depends on the values taken by the
probability density and the probability current density



On time derivatives for ⟨x̂⟩ and ⟨p̂⟩: formal 1D calculations 2308-3

in these extremes. In fact, the following result can be
formally proven (see formula (A.1) in Ref. [5])

d

dt
⟨x̂⟩ =

(
−xj + i

~
2m

ρ

)∣∣∣∣b
a

+
i

~
⟨[Ĥ, x̂]⟩ (9)

where we use the notation f |ba = f(b, t) − f(a, t) here
and in further discussion. The function j = j(x, t) is
the probability current density

j =
~
m

Im

(
Ψ̄
∂Ψ

∂x

)
=

i~
2m

(
∂Ψ̄

∂x
Ψ− Ψ̄

∂Ψ

∂x

)
, (10)

and ρ = ρ(x, t) is the probability density

ρ = Ψ̄Ψ. (11)

These two real quantities (which are sometimes called
“local observables”) can be integrated on the region of
interest, and each of these integrals is essentially the
average value of some operator. Indeed, the integral of
j is ∫ b

a

dx j =
i~
2m

∫
Ω

dx

(
∂Ψ̄

∂x
Ψ− Ψ̄

∂Ψ

∂x

)
=

i~
2m

∫
Ω

dx

[
∂

∂x

(
Ψ̄Ψ

)
− 2Ψ̄

∂Ψ

∂x

]
=

i~
2m

ρ|ba +
1

m

∫
Ω

dx Ψ̄(−i~) ∂
∂x

Ψ.

The integral on the right-hand side in this last ex-
pression is precisely the average value of the operator
p̂ = −i~∂/∂x (see formula (4)). Finally, we can write∫

Ω

dx j =
i~
2m

ρ|ba +
1

m
⟨p̂⟩ . (12)

The integral of ρ (which is a finite number only if the
probability density is calculated for a state Ψ ∈ L2(Ω))
is precisely the mean value of the identity operator
1̂ =

∫
Ω
dx | x ⟩⟨x |.

It is important to note that the operator p̂ satisfies
the relation

⟨Ψ, p̂Φ⟩ − ⟨p̂Ψ,Φ⟩ = −i~ Ψ̄Φ
∣∣b
a
, (13)

for the functions Ψ and Φ belonging to L2(Ω). If
the boundary conditions imposed on Ψ and Φ lead
to the cancellation of the term evaluated at the end-
points of the interval Ω, we can write the relation as
⟨Ψ, p̂Φ⟩ = ⟨p̂Ψ,Φ⟩. In this case, p̂ is a hermitian ope-
rator. If we make Ψ = Φ in this last expression and
Eq. (13), we obtain the following condition (see for-
mula (11))

ρ|ba = 0. (14)

Moreover, ⟨Ψ, p̂Ψ⟩ = ⟨p̂Ψ,Ψ⟩ = ⟨Ψ, p̂Ψ⟩ ⇒
Im ⟨Ψ, p̂Ψ⟩ = 0, i.e., ⟨p̂⟩ ∈ R. These last two results
are consistent with Eq. (12).

Formula (9) was obtained from the following formal
relation (formula (11) in Ref. [5] with Â = x̂):

d

dt
⟨x̂⟩ = i

~

(
⟨ĤΨ, x̂Ψ⟩ − ⟨Ψ, x̂ĤΨ⟩

)
=
i

~

(
⟨ĤΨ, x̂Ψ⟩ − ⟨Ψ, Ĥx̂Ψ⟩

)
+
i

~
⟨[Ĥ, x̂]⟩. (15)

In the case where x̂ = x and Ĥ = i~∂/∂t, this equa-
tion is precisely Eq. (6) (compare the first equality in
Eq. (15) with Eq. (6)). To check Eq. (9), formula (15)
can be developed by first calculating the following two
scalar products:

⟨ĤΨ, x̂Ψ⟩ = − ~2

2m

∫
Ω

dxx
∂2Ψ̄

∂x2
Ψ+

∫
Ω

dxxV Ψ̄Ψ,

⟨Ψ, Ĥx̂Ψ⟩ = ⟨Ĥx̂⟩ = − ~2

2m

∫
Ω

dx Ψ̄
∂2

∂x2
(xΨ)

+

∫
Ω

dxxV Ψ̄Ψ.

Before subtracting these two expressions, we develop
the first integral in ⟨Ψ, Ĥx̂Ψ⟩. Then, we use the rela-
tion

∂2Ψ̄

∂x2
Ψ− Ψ̄

∂2Ψ

∂x2
=

∂

∂x

(
∂Ψ̄

∂x
Ψ− Ψ̄

∂Ψ

∂x

)
,

and the definitions of the probability current density
(Eq. (10)) and the probability density (Eq. (11)). Af-
ter identifying the terms that depend on ∂(xj)/∂x and
∂ρ/∂x, we obtain the following result

⟨ĤΨ, x̂Ψ⟩ − ⟨Ψ, Ĥx̂Ψ⟩ =
(
i~xj +

~2

2m
ρ

)∣∣∣∣b
a

, (16)

which is substituted into Eq. (15), leading to formula
(9). The average value of the commutator [Ĥ, x̂] in
formula (9) is calculated as follows:

⟨[Ĥ, x̂]⟩ = ⟨Ĥx̂⟩ − ⟨x̂Ĥ⟩ = − ~2

2m

∫
Ω

dx Ψ̄
∂2

∂x2
(xΨ)

+

∫
Ω

dxxV Ψ̄Ψ

+
~2

2m

∫
Ω

dxx Ψ̄
∂2Ψ

∂x2
−
∫
Ω

dxxV Ψ̄Ψ.

By developing this expression, we obtain

⟨[Ĥ, x̂]⟩ = − i~
m

∫
Ω

dx Ψ̄(−i~) ∂
∂x

Ψ = − i~
m

⟨p̂⟩ . (17)

Finally, substituting results (14) and (17) into formula
(9), we obtain the following

d

dt
⟨x̂⟩ = (−xj)|ba +

1

m
⟨p̂⟩ . (18)

In the writing of this formula, we used the condition
⟨Ψ, p̂Φ⟩ = ⟨p̂Ψ,Φ⟩ (i.e., p̂ is a hermitian operator), but
Eq. (18) is also consistent with the hermiticity of x̂
(⇒ ⟨x̂⟩ ∈ R).
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It is convenient to mention here a result that per-
tains to the Hamiltonian of the system, Ĥ. Indeed, this
operator satisfies the following relation

⟨Ψ, ĤΦ⟩ − ⟨ĤΨ,Φ⟩ = − ~2

2m

(
Ψ̄
∂Φ

∂x
− ∂Ψ̄

∂x
Φ

)∣∣∣∣b
a

, (19)

for the functions Ψ and Φ belonging to L2(Ω). If
the boundary conditions imposed on Ψ and Φ lead
to the cancellation of the term evaluated at the end-
points of the interval Ω, we can write the relation
⟨Ψ, ĤΦ⟩ = ⟨ĤΨ,Φ⟩. In this case Ĥ is a hermitian
operator. If we make Ψ = Φ in this last expression, as
well as in Eq. (19), we obtain the following condition
(see formula (10))

j|ba = 0. (20)

Moreover, ⟨Ψ, ĤΨ⟩ = ⟨ĤΨ,Ψ⟩ = ⟨Ψ, ĤΨ⟩ ⇒
Im⟨Ψ, ĤΨ⟩ = 0, i.e., ⟨Ĥ⟩ ∈ R. In formula (18), condi-
tion (20) is not sufficient to eliminate the term evalua-
ted at the boundaries of the interval Ω.

We can now compare result (18) with the result ob-
tained in Ref. [6] (see formula (17) in Ref. [6])

d

dt
⟨x̂⟩ =

(
−xR2 v

)∣∣b
a
+ ⟨v⟩ . (21)

From the beginning, Ref. [6] uses real-valued expressi-
ons for the temporal evolution of x̂ and p̂. For example,
Eq. (21) is obtained from the following

d

dt
⟨x̂⟩ = −2

~
Im⟨ĤΨ, x̂Ψ⟩. (22)

That is, Eq. (21) is consistent with the hermiticity of
x̂. In fact (as we observed after Eq. (15)), because
Ĥ = i~∂/∂t, formula (6) can be written as follows:

d

dt
⟨x̂⟩ = i

~

(
⟨ĤΨ, x̂Ψ⟩ − ⟨Ψ, x̂ĤΨ⟩

)
.

Furthermore, because ⟨Ψ, x̂ĤΨ⟩ = ⟨x̂Ψ, ĤΨ⟩, Eq. (22)
is obtained. As observed from the discussion that fol-
lows formula (12) in Ref. [6], R2 = Ψ̄Ψ = |Ψ|2 = ρ is
the probability density and v = v(x, t) is the velocity
field, which is related to the probability current density
as follows: j = ρ v. From this last formula we can write∫

Ω

dx j =

∫
Ω

dx v Ψ̄Ψ = ⟨v⟩ . (23)

Comparing Eq. (23) with formula (12) (after applying
condition (14)), the relation ⟨v⟩ = ⟨p̂⟩ /m is obtained.
Returning to formula (21), it is clear that it is equal
to formula (18), and the latter is equal to formula (9),
provided that formula (14) is verified. We can then
say that the time derivative of the mean value of the
operator x̂ is not always equal to ⟨p̂⟩ /m. For exam-
ple, Ref. [3] shows a specific example that confirms the
validity of Eq. (18).

In summary, the temporal evolution of the mean
value of x̂ is given by Eq. (18) and also by Eq. (21).
Assuming that (in addition to x̂ and p̂) the operator Ĥ
is hermitian, we can write the following expression:

d

dt
⟨x̂⟩ = −(b− a) j(a, t) +

1

m
⟨p̂⟩ (24)

(in which we used relation (20)). Only one boundary
condition involving the vanishing of the boundary term
in Eq. (13), but also leading to the vanishing of the
probability current density at the ends of the interval
Ω, gives the equation d ⟨x̂⟩ /dt = ⟨p̂⟩ /m. This scena-
rio is clearly possible, for example, for the Dirichlet
boundary condition Ψ(a, t) = Ψ(b, t) = 0. However,
the same is not necessarily true for the periodic boun-
dary conditions Ψ(a, t) = Ψ(b, t) and (∂Ψ/∂x)(a, t) =
(∂Ψ/∂x)(b, t) [3].

3. Time derivatives for ⟨p̂⟩

Next, we consider the momentum operator p̂. The fol-
lowing result was formally proved in Ref. [5] (see for-
mula (A.2) in Ref. [5])

d

dt
⟨p̂⟩ = − ~2

2m

(
∂Ψ̄

∂x

∂Ψ

∂x
− Ψ̄

∂2Ψ

∂x2

)∣∣∣∣b
a

+
i

~
⟨[Ĥ, p̂]⟩.

(25)
This formula was obtained from the following formal
relation (formula (11) in Ref. [5] with Â = p̂)

d

dt
⟨p̂⟩ = i

~

(
⟨ĤΨ, p̂Ψ⟩ − ⟨Ψ, Ĥp̂Ψ⟩

)
+
i

~
⟨[Ĥ, p̂]⟩. (26)

In the case where p̂ = −i~∂/∂x y Ĥ = i~∂/∂t, this
equation simplifies to Eq. (7) (i.e., in writing Eq. (26),
no special condition has been imposed). If we want to
verify the validity of Eq. (25), we can begin to deve-
lop formula (26). Thus, we first compute the following
scalar products present there:

⟨ĤΨ, p̂Ψ⟩ = i~
~2

2m

∫
Ω

dx
∂2Ψ̄

∂x2
∂Ψ

∂x
− i~

∫
Ω

dxV Ψ̄
∂Ψ

∂x
,

⟨Ψ, Ĥp̂Ψ⟩ = ⟨Ĥp̂⟩ = i~
~2

2m

∫
Ω

dx Ψ̄
∂2

∂x2

(
∂Ψ

∂x

)
−i~

∫
Ω

dxV Ψ̄
∂Ψ

∂x
.

By integrating by parts the first integral in ⟨Ψ, Ĥp̂Ψ⟩
and then subtracting these two expressions, we obtain
the following result:

⟨ĤΨ, p̂Ψ⟩ − ⟨Ψ, Ĥp̂Ψ⟩

= i~
~2

2m

(
∂Ψ̄

∂x

∂Ψ

∂x
− Ψ̄

∂2Ψ

∂x2

)∣∣∣∣b
a

, (27)

which can be substituted into (26) to produce formula
(25). Likewise, the mean value of the commutator [Ĥ, p̂]
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in formula (26) can be explicitly computed using ⟨Ĥp̂⟩
and calculating ⟨p̂Ĥ⟩; in fact,

⟨[Ĥ, p̂]⟩ = ⟨Ĥp̂⟩ − ⟨p̂Ĥ⟩ = ⟨Ĥp̂⟩

−i~ ~2

2m

∫
Ω

dx Ψ̄
∂

∂x

(
∂2Ψ

∂x2

)
+ i~

∫
Ω

dx Ψ̄
∂

∂x
(VΨ) .

By developing the derivative in the last integral above
and simplifying, we obtain an expected result (see Refs.
[1, 2], for example)

⟨[Ĥ, p̂]⟩ = i~
∫
Ω

dx
dV

dx
Ψ̄Ψ = i~

⟨
dV

dx

⟩
≡ −i~⟨f̂⟩,

(28)
where we have also identified the external classical force
operator f̂ = f(x) = −dV/dx. Finally, formula (25)
can be written as follows

d

dt
⟨p̂⟩ = − ~2

2m

(
∂Ψ̄

∂x

∂Ψ

∂x
− Ψ̄

∂2Ψ

∂x2

)∣∣∣∣b
a

+ ⟨f̂⟩. (29)

Note that formula (27) is obtained by making Φ = p̂Ψ
in relation (19). Thus, if the boundary term in Eq. (19)
is zero because of the boundary conditions (and conse-
quently, Ĥ is hermitian), the boundary term in Eq. (29)
does not necessarily vanish. An example of this sce-
nario is provided by the Dirichlet boundary condi-
tion, Ψ(a, t) = Ψ(b, t) = 0. Indeed, with this boun-
dary condition Ĥ, is hermitian, but the boundary
term in Eq. (29) is not zero. Within the case of
the periodic boundary condition, Ψ(a, t) = Ψ(b, t) and
(∂Ψ/∂x)(a, t) = (∂Ψ/∂x)(b, t), the operator Ĥ is also
hermitian, but the boundary term in Eq. (29) does
vanish (from the Schrödinger equation in (8) we also
know that (∂2Ψ/∂x2)(a, t) = (∂2Ψ/∂x2)(b, t) if the

potential satisfies V |ba = 0). Similarly, in an open
interval (Ω = (a, b) = (−∞,+∞)) the boundary
term in Eq. (29) is zero if Ψ(x, t) and its derivative,
∂Ψ(x, t)/∂x, tend to zero at the ends of that inter-
val. Specifically, if a wave function tends to zero for
x → ±∞, at least as | x |− 1

2−ϵ (where ϵ > 0), then
its derivative also tends to zero there, and the boun-
dary term in both in Eqs. (19) and (29) vanishes (as a
result, we also have Ψ(x, t) ∈ L2(Ω)). This result pro-
vides the formal argument for the cancellation of these
two boundary terms. Clearly, if Ψ satisfies a homo-
geneous boundary condition for which Ĥ is hermitian
and ∂Ψ/∂x satisfies the same boundary condition, the
boundary term in Eq. (29) vanishes (this result seems
to be very restrictive).

Consequently, result (25) was obtained from formula
(26). Likewise, the following expression for d⟨p̂⟩/dt was
also obtained from formula (26) (see formula (19) in
Ref. [6])

d

dt
⟨p̂⟩ = −R2

(m
2
v2 − V −Q

)∣∣∣b
a
+ ⟨f̂⟩−

⟨
∂Q

∂x

⟩
, (30)

where (as we said before) R2 = ρ, v = j/ρ and

f̂ = f(x) = −dV/dx; moreover, Q = Q(x, t) is Bohm’s
quantum potential,

Q ≡ − ~2

2m

1

|Ψ|
∂2 |Ψ|
∂x2

= − ~2

2m

1
√
ρ

∂2
√
ρ

∂x2

=
~2

4m

[
1

2

(
1

ρ

∂ρ

∂x

)2

− 1

ρ

∂2ρ

∂x2

]
. (31)

Now let us verify and reexamine the validity of Eq. (30).
Returning to result (26), it is clear that it can also be
written as follows:

d

dt
⟨p̂⟩ = i

~

(
⟨ĤΨ, p̂Ψ⟩ − ⟨Ĥp̂⟩

)
+
i

~

(
⟨Ĥp̂⟩ − ⟨Ψ, p̂ĤΨ⟩

)
,

and, if the condition

⟨Ψ, p̂ĤΨ⟩ = ⟨p̂Ψ, ĤΨ⟩, (32)

is used, we can write

d

dt
⟨p̂⟩ = i

~

(
⟨ĤΨ, p̂Ψ⟩ − ⟨p̂Ψ, ĤΨ⟩

)
=
i

~

(
⟨ĤΨ, p̂Ψ⟩ − ⟨ĤΨ, p̂Ψ⟩

)
.

Therefore, the time derivative of ⟨p̂⟩ is given by the
following

d

dt
⟨p̂⟩ = −2

~
Im⟨ĤΨ, p̂Ψ⟩, (33)

which is automatically real-valued. It is important to
note that the formula

⟨Ψ, p̂ĤΨ⟩ − ⟨p̂Ψ, ĤΨ⟩ = ~2 Ψ̄
∂Ψ

∂t

∣∣∣∣b
a

(34)

is obtained by setting Φ = ĤΨ in relation (13). If the
boundary conditions imposed on Ψ lead to the cancel-
lation of the boundary term in Eq. (34), then formula
(32) is verified; however, that same boundary condition
can also cancel the boundary term in Eq. (13), with
Ψ = Φ (the latter would imply that p̂ is hermitian).
The spatial part of the boundary term in Eq. (34) is
unaffected by the presence of the time derivative.

As is known, by substituting the polar form of
the wave function in the Schrödinger Eq. (8) (i.e.,
Ψ =

√
ρ exp (iS/~)), where S = S(x, t) ∈ R is essenti-

ally the phase of the wave function) and then separating
the real and imaginary parts, we obtain (i) the quantum
Hamilton-Jacobi equation

∂S

∂t
+

1

2m

(
∂S

∂x

)2

+Q+ V = 0, (35)

and (ii) the continuity equation

∂ρ

∂t
+
∂j

∂x
= 0. (36)
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The probability current density j can also be written
in terms of ρ and S after replacing the polar form of Ψ
in formula (10)

j =
1

m
ρ
∂S

∂x
. (37)

Formula (33) can be written as follows

d

dt
⟨p̂⟩ = +2~

∫
Ω

dx Im

(
∂Ψ̄

∂t

∂Ψ

∂x

)
, (38)

and by substituting the relation Ψ =
√
ρ exp (iS/~) in

Eq. (38), we obtain the following result

d

dt
⟨p̂⟩ =

∫
Ω

dx

(
∂ρ

∂t

∂S

∂x
− ∂ρ

∂x

∂S

∂t

)
. (39)

By solving for ∂S/∂t and ∂ρ/∂t in Eqs. (35) and (36),
respectively, and substituting them into Eq. (39), for-
mula (30) is obtained (after some simple calculations).

The boundary term in formula (29) is real-valued if
Eq. (14) is verified. To obtain this result, we first write
that boundary term separately but in terms of ρ and j
(or v = j/ρ):

− ~2

2m

∂Ψ̄

∂x

∂Ψ

∂x

∣∣∣∣b
a

+
~2

2m
Ψ̄
∂2Ψ

∂x2

∣∣∣∣b
a

=

[
− ~2

8m

1

ρ

(
∂ρ

∂x

)2

− ρ
m

2
v2

]∣∣∣∣∣
b

a

+

(
−ρQ− ρ

m

2
v2 + i

~
2

∂j

∂x

)∣∣∣∣b
a

(40)

(Eq. (40) is, in fact, also valid without vertical bars,
|ba). As we have observed before, the hermiticity of p̂
(⇒ ⟨p̂⟩ ∈ R) requires that the probability density (for
the state Ψ) satisfies formula (14). Differentiating that
formula with respect to time, we obtain the following:(

∂ρ

∂t

)
(b, t)−

(
∂ρ

∂t

)
(a, t) =

∂ρ

∂t

∣∣∣∣b
a

= 0.

Now, using the continuity equation (Eq. (36)), we ob-
tain the condition

∂j

∂x

∣∣∣∣b
a

= 0. (41)

With this last result, the entire boundary term in
Eq. (40) (and therefore in Eq. (29)) is real-valued (the
first term in (40) is always real). Consistently, d⟨p̂⟩/dt
and ⟨f̂⟩ are both real-valued quantities in Eq. (29).

In the proof of the formula (30), the condition gi-
ven in Eq. (32) was used; thus, the results in Eq. (29)
(or Eq. (25)) and Eq. (30) are not equivalent. Howe-
ver, from the expression for d⟨p̂⟩/dt that is written after
Eq. (31), we can write the following:

d

dt
⟨p̂⟩ = i

~

(
⟨ĤΨ, p̂Ψ⟩ − ⟨Ψ, p̂ĤΨ⟩

)
.

Now, instead of using Eq. (32), we use relation (34)
(from which we solve for ⟨Ψ, p̂ĤΨ⟩). This process le-
ads to the following expression

d

dt
⟨p̂⟩ = −2

~
Im⟨ĤΨ, p̂Ψ⟩ − Ψ̄ĤΨ

∣∣∣b
a

(42)

(in which we have used Ĥ = i~∂/∂t to write the boun-
dary term in Eq. (42)). Indeed, formulas (29) and (42)
are equivalent. The first term on the right-hand side
of Eq. (42) is precisely the entire right-hand side of
Eq. (30). Additionally, the boundary term in Eq. (42)
can be rewritten using Eq. (8). In this way, we obtain
the following result:

d

dt
⟨p̂⟩ = −ρm

2
v2
∣∣∣b
a
+

~2

2m
Ψ̄
∂2Ψ

∂x2

∣∣∣∣b
a

+ ρQ|ba−
⟨
∂Q

∂x

⟩
+⟨f̂⟩.

Now, we use the following (remarkable) relation:

∂

∂x

[
− ~2

8m

1

ρ

(
∂ρ

∂x

)2
]
=
∂ρ

∂x
Q

(where we have made use of the definition of the Bohm’s
quantum potential given by Eq. (31)), to write

ρQ|ba −
⟨
∂Q

∂x

⟩
=

∫ b

a

dx
∂ρ

∂x
Q = − ~2

8m

1

ρ

(
∂ρ

∂x

)2
∣∣∣∣∣
b

a

,

(43)
which leads us to the following result:

d

dt
⟨p̂⟩ =

[
− ~2

8m

1

ρ

(
∂ρ

∂x

)2

− ρ
m

2
v2

]∣∣∣∣∣
b

a

+
~2

2m
Ψ̄
∂2Ψ

∂x2

∣∣∣∣b
a

+ ⟨f̂⟩. (44)

Finally, because the following relation is verified:[
− ~2

8m

1

ρ

(
∂ρ

∂x

)2

− ρ
m

2
v2

]∣∣∣∣∣
b

a

= − ~2

2m

∂Ψ̄

∂x

∂Ψ

∂x

∣∣∣∣b
a

(see Eq. (40)), formula (44) is precisely result (29) (i.e.,
Eqs. (42) and (29) are equivalent).

Recapitulating, the temporal evolution of the mean
value of p̂ is given by Eq. (29), but the boundary term
must be real-valued if the mean value of p̂ is real. As
we have demonstrated (see Eq. (40)), to accomplish
this, it is enough that the boundary conditions satisfy
Eq. (14), which implies that Eq. (41) is also satisfied
because the continuity equation is verified. After subs-
tituting Eqs. (40) and (41) in Eq. (29), this formula
(Eq. (29)) can be written as follows:

d

dt
⟨p̂⟩ =

[
− ~2

8m

1

ρ

(
∂ρ

∂x

)2

− ρ
m

2
v2

]∣∣∣∣∣
b

a
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+
(
−ρQ− ρ

m

2
v2
)∣∣∣b

a
+ ⟨f̂⟩. (45)

Formula (30) also gives us the average value of p̂,
but this equation must also be consistent with Eq. (14)
(because p̂ is hermitian) and the boundary conditi-
ons should cancel the boundary term that appears in
Eq. (34). This term is precisely

~2 Ψ̄
∂Ψ

∂t

∣∣∣∣b
a

=
~2

2

∂ρ

∂t

∣∣∣∣b
a

+ i~ ρ
∂S

∂t

∣∣∣∣b
a

, (46)

and because (∂ρ/∂t)|ba = 0 (as a result of the validity of
Eq. (14)), we have that the vanishing of the left-hand
side in Eq. (46) implies the following

ρ
∂S

∂t

∣∣∣∣b
a

= 0. (47)

Now, multiplying the quantum Hamilton-Jacobi equa-
tion (Eq. (35)) by ρ and substituting the expression
∂S/∂x = mv (Eq. (37) with j = ρv) and Eq. (47), the
following relation is obtained (in this way, this result is
also a consequence of the elimination of the left-hand
side in Eq. (46))

ρV |ba =
(
−ρQ− ρ

m

2
v2
)∣∣∣b

a
. (48)

Now, returning to formula (30) and substituting rela-
tion (43), we obtain the following result

d

dt
⟨p̂⟩ =

[
− ~2

8m

1

ρ

(
∂ρ

∂x

)2

− ρ
m

2
v2

]∣∣∣∣∣
b

a

+ ρV |ba + ⟨f̂⟩.

(49)
Formula (49) becomes formula (45), as long as rela-

tion (48) is obeyed (this is an expected result!). Thus,
Eqs. (29) and (30), together with the condition given
by Eq. (14) (which is consistent with the hermiticity
of p̂), give us identical results if the boundary term in
Eq. (34) vanishes (which occurs if p̂ is hermitian); i.e.,
if Eq. (48) is verified (see the comment after Eq. (34)).
In conclusion, Eqs. (49) and (29) show that the time
derivative of the mean value of p̂ is always equal to a
term evaluated at the ends of the interval containing
the particle plus the mean value of the external classi-
cal force operator. However, as is shown in Eq. (49),
the boundary term may depend only on the values ta-
ken at x = a and x = b by the probability density, its
first spatial derivative, the probability current density
and the external potential.

In agreement with the previous results (see the dis-
cussion that follows Eq. (29)), all of the boundary
terms in Eq. (49) do not vanish for the solutions to the
Schrödinger equation Ψ = Ψ(x, t) satisfying the Dirich-
let boundary condition. In this case, both the density
of probability and the probability current density va-
nish at the ends of the interval, i.e., j|ba = 0 − 0 = 0

and ρ|ba = 0 − 0 = 0. Therefore, we have ρV |ba = 0

and (ρmv2/2)
∣∣b
a
= (0/0)− (0/0) = 0. The latter result

because j = ρv, ρ(a) = ρ(b) (Eq. (14)) and j(a) = j(b)

(Eq. (20)). Moreover, we also know that ρQ|ba = 0,
which is consistent with Eq. (48). Thus, we can write
the following result

d

dt
⟨p̂⟩ = − ~2

8m

1

ρ

(
∂ρ

∂x

)2
∣∣∣∣∣
b

a

+ ⟨f̂⟩. (50)

The boundary term in Eq. (50) can be written as fol-
lows:

− ~2

2m

(
∂
√
ρ

∂x

)2
∣∣∣∣∣
b

a

,

and (in this case) it coincides with ⟨−∂Q/∂x⟩ (this re-
sult comes from Eq. (43)). Also (in this case), the
boundary term coincides with the following expression:

− ~2

2m

∂Ψ̄

∂x

∂Ψ

∂x

∣∣∣∣b
a

= − ~2

2m

∣∣∣∣∂Ψ∂x
∣∣∣∣2
∣∣∣∣∣
b

a

(see the relation that follows Eq. (44)). Consequently,
the mean value of the quantum force fQ = fQ(x, t) ≡
−∂Q/∂x can be calculated by simply evaluating a quan-
tity (which, in this case, only depends on ρ and ∂ρ/∂x)
at x = b and at x = a and then subtracting these two
results. Similarly, if we assign the following expressions
to fQ:

fQ → − ~2

2m

1

|Ψ|2
∂

∂x

∣∣∣∣∂Ψ∂x
∣∣∣∣2

or

fQ → − ~2

2m

1

ρ

∂

∂x

(
∂
√
ρ

∂x

)2

,

which are clearly distinct from each another and also
from −∂Q/∂x, the correct value for ⟨fQ⟩ is obtained.
However, an exact expression for fQ can be obtained
using the relation that precedes Eq. (43), in which
Q∂ρ/∂x = ∂(ρQ)/∂x − ρ ∂Q/∂x. The result is the
following

fQ =
1

ρ

∂

∂x

[
−ρQ− ~2

8m

1

ρ

(
∂ρ

∂x

)2
]
. (51)

Clearly, ⟨fQ⟩ is always equal to a boundary term. For-
mula (51) can be written without the explicit presence
of Bohm’s quantum potential. Indeed, by substituting
the expression for Q (the expression to the right in Eq.
(31)) in Eq. (51), we obtain the following

fQ =
1

ρ

∂

∂x

[
~2

4m
ρ
d2

dx2
ln(ρ)

]
. (52)

This last result has been known in hydrodynamic for-
mulations of Schrödinger’s theory; see, for example, the
following recent [11] (and further references therein).
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Now, if we return to Eq. (50) and assume that the

external potential is zero (⇒ ⟨f̂⟩ = 0), we can write the
following

d

dt
⟨p̂⟩ = − ~2

2m

(
∂
√
ρ

∂x

)2
∣∣∣∣∣
b

a

= − ~2

2m

∣∣∣∣∂Ψ∂x
∣∣∣∣2
∣∣∣∣∣
b

a

= ⟨fQ⟩.

(53)
Consequently, the mean value of the force encounte-
red by a free particle confined to a region and col-
liding with the two walls is precisely ⟨fQ⟩. Then,
from Eq. (53), and because the formula that follows
Eq. (44) (which is also valid without vertical bars, |ba)
with (ρmv2/2)

∣∣
(x=b)

= (ρmv2/2)
∣∣
(x=a)

= 0 is verified,

we can say that the average force on the particle when
it hits the wall at x = b is given by the following

− ~2

2m

(
∂
√
ρ

∂x

)2
∣∣∣∣∣
(x=b)

= − ~2

2m

∣∣∣∣∂Ψ∂x
∣∣∣∣2
∣∣∣∣∣
(x=b)

, (54)

At x = a, the expression for this force is obtained from
Eq. (54) by making the following replacements: b → a
and − → +. Let us now consider the example of the
confined (free) particle moving between x = 0 (= a)
and x = L (= b), and in some of its possible stationary
states

Ψ = Ψn(x, t) =

√
2

L
sin

(nπ
L
x
)
exp

(
−iEn

~
t

)
, (55)

where En = ~2π2n2/2mL2, with n = 1, 2, . . . (na-
turally, the corresponding probability density ρ =
ρn(x) = |Ψn(x, t)|2 is independent of time). Using these
results in Eq. (54) (in either of the two expressions),
we can determine that the average force on the particle
at x = L is given by −2En/L, and at x = 0 it is gi-
ven by +2En/L; therefore, ⟨fQ⟩ = 0 (this same result
was obtained in Ref. [12] following a procedure diffe-
rent from that shown here). However, if the state Ψ is
a linear combination of the solutions (55) (and hence,
the corresponding probability density is also a function
of time), ⟨fQ⟩ does not necessarily vanish (in this spe-
cific case, the average force on the particle at x = L is
not always minus the value ((−1)×) at x = 0) [13]. In
Ref. [13] the issue of the average forces for a particle
ultimately restricted to a finite one-dimensional inter-
val, either because there exists an infinite potential or
because we put the particle in the interval and neglect
the rest of the line, has been recently treated.

Consistently with previous results (see the discus-
sion following Eq. (29)), the entire boundary term in
Eq. (49) vanishes for the solutions Ψ = Ψ(x, t) sa-
tisfying the periodic boundary condition. Indeed, we
know that ρ|ba = j|ba = 0; therefore, ρV |ba = 0 (pro-

vided that V |ba = 0) and ρQ|ba = 0 (see Eq. (48)).
Finally, because

∂ρ

∂x

∣∣∣∣b
a

= 2Re

(
Ψ̄
∂Ψ

∂x

)∣∣∣∣b
a

,

all of the boundary terms in Eq. (49) vanish, and the

result d⟨p̂⟩/dt = ⟨f̂⟩ is reached. However, in this case,

we also know that d2⟨x̂⟩/dt2 ̸= ⟨f̂⟩/m. This result oc-
curs because the boundary term in Eq. (24) is not zero
(because the probability current density does not va-
nish at the ends of Ω), and its derivative with respect
to t does not vanish either. Clearly, this situation does
not occur when the relation j(a) = j(b) = 0 is obeyed
(as in the case of the Dirichlet boundary condition).

Finally, as was explained before (see the discussion
following Eq. (29)), the boundary term in Eq. (29)
is zero in an open interval (Ω = (−∞,+∞)), provided
that appropriate conditions can be satisfied as x→ ±∞
(i.e., Ψ and its derivative should vanish at infinity).
Equivalently, the boundary term in Eq (45) is also zero,
as well as that in Eq. (49) (because Eq. (48) is sa-
tisfied). We can then conclude (from Eq. (43)) that

⟨fQ⟩ = 0; therefore, d⟨p̂⟩/dt = ⟨f̂⟩. From Eq. (24),
relation d⟨x̂⟩/dt = ⟨p̂⟩/m is also verified; consequently,

d2⟨x̂⟩/dt2 = ⟨f̂⟩/m.

4. Conclusions

We have formally calculated time derivatives of ⟨x̂⟩ and
⟨p̂⟩ in one dimension. Simultaneously, we have identi-
fied the conditions under which two pairs of these de-
rivatives, which have been previously published, can
be equivalent. When the particle is in a finite inter-
val, we have observed that the Ehrenfest theorem is
generally not verified. In fact, because of the large va-
riety of boundary conditions that can be imposed in
this case (and for which p̂ and Ĥ are hermitian opera-
tors), the boundary terms that appear in d⟨x̂⟩/dt and
d⟨p̂⟩/dt (which may depend only on the values taken
there by the probability density, its spatial derivative,
the probability current density and the external poten-
tial) do not always vanish. Particularly, if the boundary
term in d⟨x̂⟩/dt does not vanish, we generally know

that d2⟨x̂⟩/dt2 ̸= ⟨f̂⟩/m. If the particle is at any part
of the real line, but there is a very small chance for
it to exist at infinity, the time derivatives of ⟨x̂⟩ and
⟨p̂⟩ obey the usual Ehrenfest relations, as expected. As
we have demonstrated, d⟨x̂⟩/dt is equal to ⟨p̂⟩/m, plus
a boundary term, but we can also say that d⟨p̂⟩/dt is
equal to ⟨f̂⟩ + ⟨fQ⟩ plus a boundary term. In the first
formula, the respective boundary term is zero whene-
ver the probability current density vanishes at the ends
of the interval (see Eq. (24)). As a case in point, the
same result is observed in the second formula when the
probability density and current are zero there (see, for
example, Eq. (45) conjointly with Eq. (43)).

If a free particle (V = const ⇒ f̂ = 0 ⇒ ⟨f̂⟩ = 0) is
confined to a box, the quantum force fQ (or rather, its
mean value ⟨fQ⟩) is the quantity that reports the exis-
tence of the box’s impenetrable walls (at least for the
Dirichlet boundary condition). In all cases, the average
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value of fQ = −∂Q/∂x is simply obtained by evalua-
ting a certain quantity at each end of the interval oc-
cupied by the particle and subtracting the two results
(see Eq. (51)). That quantity is precisely proportional
to the integrand of the so-called probability density’s
Fisher information, F(ρ), in particular cases; for exam-
ple, when ρ = 0 at the ends of the interval. In effect,
for a particle in an interval Ω = [a, b], we obtain the
following (see, for instance, Refs. [11,14]):

F(ρ) =

∫ b

a

dx
1

ρ

(
∂ρ

∂x

)2

.

Clearly, in this case, we obtain ⟨fQ⟩ by evaluating the
integrand in F(ρ) (times −~2/8m) at x = a and x = b
(see Eq. (51)).
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We study the issues of average forces and the Ehrenfest theorem for a particle restricted to a semi-infinite interval by an impenetrable wall.
We consider and discuss two specific cases: (i) a free particle in an infinite step potential, and (ii) a free particle on a half-line. In each
situation, we show that the mean values of the position, momentum and force, as functions of time, verify the Ehrenfest theorem (the state
of the particle being a general wave packet that is a continuous superposition of the energy eigenstates for the Hamiltonian). However, the
involved force is not the same in each case. In fact, we have the usual external classical force in the first case and a type of nonlocal boundary
quantum force in the second case. In spite of these different forces, the corresponding mean values of these quantities give the same results.
Accordingly, the Ehrenfest equations in the two situations are equivalent. We believe that a careful and clear consideration of how the two
cases differ but, in the end, agree, is pertinent, and has not been included in the literature.
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1. Introduction

The problem of a Schrödinger particle of massM moving
in a one-dimensional step potential of finite height (or a po-
tential barrier) is one of the simplest problems in quantum
mechanics. In fact, this problem can be found in almost any
quantum mechanics textbook [1-3]. Let us assume that the
barrier is located atx = 0 and that the potential is defined
by V (x < 0) = 0 andV (x > 0) = V0. If the energy of
the particle is such thatε < V0, the particle penetrates some
distance into the barrier. If we want to restrict the move-
ment of the particle precisely to the semi-spacex ≤ 0 (the
half-line), we have two specific methods to achieve that re-
striction. The first method is to take the limit ofV0 → ∞
in the finite step potential. In this case, the (free) particle
lives on the entire real line, which is then forever restricted
to the half-line. We call this case “a particle-in-an-infinite-
step-potential”. The second method is to consider from the
beginning that the (free) particle has always lived on the half-
line. In this case, an external potential is not necessary to
restrict the particle; only boundary conditions are necessary.
We call this case “a particle-on-a-half-line”, and we only use
the Dirichlet boundary condition (u(x = 0) = 0) in this pa-
per.

The problem of a particle restricted to move on a semi-
infinite interval (either because there exists an infinite poten-
tial or because we put the particle on the half-line and neglect
the rest of the line) has been variously studied [4-16]. The
purpose of this paper is to examine and relate the two spe-
cific methods (mentioned above) to achieve the restriction of
the movement of a particle to a semi-infinite region (i.e., to a
half-line). We include in the discussion the issues of average
forces, and the time evolution of the mean values of the po-

sition and momentum operators (i.e., the Ehrenfest theorem).
Recently, we did a study similar to that in the present article
but for the system of a particle confined to a closed interval
(i.e., to a box) [17]. Because, in the present case, the relevant
spatial integration range for some matrix elements goes from
−∞ to 0, one could expect some complications in the evalu-
ation of these quantities. We also address this issue herein.

The outline of the paper is as follows. In Sec. 2, we
present some basic results for the problem of a particle in a
finite step potential. In Sec. 3, we examine the limiting pro-
cedure that permits us to obtain the mean value of the exter-
nal classical force (̂F = −dV (x)/dx) for the problem of the
particle-in-an-infinite-step-potential from the problem of the
particle in a finite step potential (the state of the particle be-
ing a stationary state). Then, we obtain an expression for the
mean value of̂F for the particle-in-an-infinite-step-potential
(the state of the particle being a complex general state). In
this section, we also calculate explicit general expressions for
the mean values of the position (X̂) and momentum (̂P ) op-
erators. We conveniently avoid the problems associated with
the integration range over the interval(−∞, 0] by consider-
ing certain generalized limits. Then, we confirm the Ehren-
fest theorem for a particle-in-an-infinite-step-potential (i.e.,
d〈X̂〉/dt = 〈P̂ 〉/M andd〈P̂ 〉/dt = 〈F̂ 〉). In Sec. 4, we
present the formal time derivatives of the mean values of the
position (̂x) and momentum operators (p̂) for a particle-on-a-
half-line. By using the Dirichlet boundary condition atx = 0
while also supposing that the wave function tends to zero at
x = −∞, we find the following results:d〈x̂〉/dt = 〈p̂〉/M
andd〈p̂〉/dt = b.t.+〈f̂〉, whereb.t. denotes a boundary term
andf̂ = −dϕ(x)/dx is the external classical force upon the
particle-on-a-half-line. Moreover, that boundary term can be
written as the mean value of a (nonlocal) quantity that we call
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the boundary quantum force,fB . Incidentally, by supposing
that the first spatial derivative of the wave function tends to
zero atx = −∞, theb.t. is simply equal to a certain quan-
tity evaluated atx = 0. By using the latter condition and
considering a wave packet that is a continuous superposition
of the energy eigenfunctions of the Hamiltonian describing a
particle-on-a-half-line, withϕ(x) = 0 (⇒ f̂ = 0), we obtain
the meaningful result that theb.t. is equal to the mean value
of the external classical force operator for a particle-in-an-
infinite-step-potential;i.e., we find thatd〈p̂〉/dt is equal to
〈F̂ 〉. Hence, the Ehrenfest theorem for a particle-on-a-half-
line is completed with the formulad〈p̂〉/dt = 〈fB〉. Note
that, throughout this paper, we use capital letters to denote the
operators in the particle-in-an-infinite-step-potential problem
and lowercase letters in the particle-on-a-half-line-problem.
Finally, some concluding remarks are given in Sec. 5.

2. Particle in a finite step potential

Let us first consider the following (external) finite step poten-
tial of heightV0:

V (x) = V0Θ(x) (−∞ < x < +∞), (1)

whereΘ(y) is the Heaviside step function (Θ(y < 0) = 0
andΘ(y > 0) = 1). Because the derivative ofΘ(y) is the
Dirac delta function (δ(y)), the external classical force upon
the particle (̂F = F (x) = −dV (x)/dx) can be written as
follows:

F (x) = −V0δ(x) (−∞ < x < +∞). (2)

The eigensolutions of the (eigenvalue) Schrödinger equa-
tion Ĥφk(x) = εkφk(x) for positive energies0 < εk < V0

can be written as follows:

φk(x) = Θ(−x)
[
exp(ikx) +

ik + αk

ik − αk
exp(−ikx)

]

+Θ(x)
2ik

ik − αk
exp(−αkx) (−∞ < x < +∞), (3)

wherek ≡ √
2Mεk/~ andαk ≡

√
2M(V0 − εk)/~ are real-

valued and positive quantities. The Hamiltonian operator

Ĥ = T̂ +V (x) =
1

2M
P̂ 2+V (x) = − ~2

2M

∂2

∂x2
+V (x) (4)

(whereT̂ is the kinetic energy operator and̂P = −i~∂/∂x
is the momentum operator) describes a particle living on the
whole real line,R. As usual, one assumes that this (self-
adjoint) operator (for a finiteV0) acts on continuously dif-
ferentiable functions belonging (as do their second deriva-
tives) to the well-known spaceL2(R) [18]. Thus, any eigen-
function of Ĥ, φk(x), and its derivative,φ′k(x), must be
continuous atx = 0. Therefore, atx = 0, we write
φk(0−)=φk(0+)≡φk(0) and φ′k(0−)=φ′k(0+) ≡ φ′k(0)

(whereφk(x±) ≡ lim
ε→0

φk(x ± ε), with ε > 0). Likewise,

the probability current density

jk(x) =
~
M

Im
[
φ̄k(x)

d

dx
φk(x)

]
(5)

(where the horizontal bar represents complex conjuga-
tion) verifies jk(0−) = jk(0+) ≡ jk(0). In addi-
tion, the probability density,%k(x) = |φk(x)|2, verifies
%k(0−)=%k(0+)≡%k(0). Note that,jk(x > 0) = 0; there-
fore, jk(0) = 0. However, the probability density does not
vanish atx = 0 (although the probability density in the region
x > 0 decreases rapidly asx increases). Thus, the potential
barrier of a finite height (atx = 0) is not strictly an impen-
etrable barrier [19,20]. In fact, the finite barrier atx = 0
represents a very simple type of point interaction. This type
of interaction can be modelled through boundary conditions
only (without any singular potential atx = 0); i.e., the cor-
responding (self-adjoint) Hamiltonian operator has the form
given in (4) (withx ∈ R− {0}), whereV in this case is just
the (bounded) finite step potential. This operator has in its
domain a general boundary condition that depends on four
(real) parameters [21]. Moreover, for each function belong-
ing to this domain, we obtain that the probability current den-
sity is continuous atx = 0.

As is well known, the standard formula to calculate the
mean value of an operator̂A in the normalized stateχ is
given by 〈Â〉χ = 〈χ, Âχ〉. By using the latter formula to
calculate the mean value of the force operatorF̂ (Eq. (2)) in
the stationary stateφk(x), the result is the following:

〈F̂ 〉φk
= 〈φk, F̂ φk〉

=

+∞∫

−∞
dxF (x) |φk(x)|2 = −V0%k(0). (6)

Obviously, φk(x) is not a normalized state (because of
its behaviour atx = −∞); i.e., φk(x) is not a square-
integrable function. In addition,φk(x) is not even normal-
izable; thus, it makes no sense to divide the right hand side
of (6) by 〈φk, φk〉 ∝ δ(0). Thus, we write the formula
〈F̂ 〉φk

= 〈φk, F̂ φk〉 (which gives us a finite result) as a mat-
ter of convenience only. Nevertheless, as we will see in the
next section, this choice has no impact on the results that we
obtain.

3. Particle-in-an-infinite-step-potential

The eigensolutions of the Hamiltonian operator (Eq. (4)) in
the potential

V (x) = lim
V0→∞

V0Θ(x) (−∞ < x < +∞), (7)

are obtained from Eq. (3). Clearly, ifV0 → ∞, all of the
eigenfunctions verify the resultφk(x) → 0 ≡ ψk(x) for
x ≥ 0 because

αk ≈
√

2MV0

~
→∞,
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and also

2ik

ik − αk
≈ 2i

√
εk

i
√

εk −
√

V0

≈ −2i

√
εk

V0
→ 0.

The latter result leads us to write the following:

φk(0+) (≡ φk(0)) ≈ −2i

√
εk

V0
⇒

ρk(0+)(≡ ρk(0)) = |φk(0)|2 ≈ 4εk

V0
. (8)

Likewise, to obtainφk(x) in the regionx < 0 (i.e., ψk(x)),
we need to use the following result:

ik + αk

ik − αk
≈ i

√
εk +

√
V0

i
√

εk −
√

V0

→ −1.

(Throughout this article, we use the approximation sign “≈”
in any expression in whichV0 À εk). Thus, the eigensolu-
tions of the Hamiltonian̂H with the potential given in Eq. (7)
have the form

ψk(x) = Θ(−x) [exp(ikx)− exp(−ikx)]

= Θ(−x)2i sin(kx) (−∞ < x < +∞), (9)

for the energiesεk → Ek = ~2k2/2M ∈ (0,∞) (Note:
we prefer to use the symbolEk in the case of the infi-
nite step potential). We have chosenk ∈ (0,∞) so that
exp(ikx) in (9) represents a plane wave moving to the right
and− exp(−ikx) represents a plane wave moving to the left
(i.e., the incident wave is all reflected, but the reflected wave
at x = 0 is shifted in phase from the incident atx = 0 by a
factor of−1). Note also thatψk(x) satisfies the “extended”
Dirichlet boundary conditionψk(x ≥ 0) = 0.

The corresponding mean value〈F̂ 〉ψk
= 〈ψk, F̂ψk〉 is

truly independent ofV0 (which is valid whenV0 tends to in-
finity). In effect, one obtains

〈F̂ 〉ψk
= lim

V0→∞
〈F̂ 〉φk

= lim
V0→∞

−V0ρk(0) = −4Ek (10)

(in which we used the results given in Eqs. (6) and (8),
with εk → Ek). More precisely, we should write
〈F̂ 〉ψk

= −4Ek |A(k)|2, whereA(k) is a complex-valued
function of the “momenta”k, which multiplies the right-hand
side of the solutionsφk(x) (Eq. (3)) and alsoψk(x) (Eq. (9)).
So, we may say that the average force upon the particle (in
a stationary state) when the particle hits the infinite wall at
x = 0 is proportional to−4Ek |A(k)|2. Incidentally, the spe-
cific result that〈F̂ 〉 in a stationary state is independent of the
heightV0 of one of the walls of a finite square well (when
V0 →∞), was obtained in Ref. 22.

Let us write an (assumed normalized) complex general
wave packetΨ = Ψ(x, t) of the following form:

Ψ(x, t) =

∞∫

0

dk√
2π

A(k) ψk(x)

× exp
(
−i

Ek

~
t

)
(−∞ < x < +∞), (11)

whereψk(x) is given by Eq. (9). By substituting Eq. (9)
into (11), we can also write the following:

Ψ(x, t)=Θ(−x)

∞∫

0

dk√
2π

A(k) uk(x) exp
(
−i

Ek

~
t

)
, (12)

where the functionsuk(x) are given by

uk(x) = 2i sin(kx). (13)

In the regionx ∈ (−∞, 0], uk(x) obviously coincides with
ψk(x) (Eq. (9)). The Hamiltonian for a free particle living
on the half-line is simplŷh ≡ T̂ (see Eq. (4)) and acts (es-
sentially) on the functionsu(x) ∈ L2((−∞, 0]) such that
(ĥu)(x) is also inL2((−∞, 0]) while obeying the Dirich-
let boundary condition,u(0) = 0. The eigenfunctions tôh
are precisely the functionsuk(x), and its eigenvalues are the
same as those of̂H.

The mean value of the force operator at timet in the state
given by Eq. (11),〈F̂ 〉Ψ = 〈Ψ, F̂Ψ〉, takes the form:

〈F̂ 〉Ψ =

∞∫

0

∞∫

0

dk dk′

2π
Ā(k)A(k′) (F̂ )(k, k′)

× exp
[
i
(Ek − Ek′)

~
t

]
, (14)

where the matrix elements of̂F , (F̂ )(k, k′) = 〈ψk, F̂ψk′〉
= lim

V0→∞
〈φk, F̂ φk′〉, are given by the following (see Eq. (2)):

(F̂ )(k, k′) = lim
V0→∞

−V0φ̄k(0)φk′(0). (15)

Substituting the result of the left-hand side in (8) into Eq. (15)
(with εk;k′ → Ek;k′ ), we obtain the following noteworthy re-
sult:

(F̂ )(k, k′) = lim
V0→∞

−V0 2i

√
Ek

V0

× (−2i)
√

Ek′

V0
= −4

√
EkEk′ . (16)

Thus, by substituting Eq. (16) into (14), we can write a gen-
eral expression for the average value of the operatorF̂ when
V0 →∞:

〈F̂ 〉Ψ = −4

∞∫

0

∞∫

0

dk dk′

2π
Ā(k)A(k′)

×
√

EkEk′ exp
[
i
(Ek − Ek′)

~
t

]
. (17)

Now let us check that the mean values of the position
(X̂ = x) and momentum (̂P = −i~∂/∂x) operators at time
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t for the general stateΨ verify the Ehrenfest theorem. The
expectation value of the position operator is the expression

〈X̂〉Ψ =

∞∫

0

∞∫

0

dk dk′

2π
Ā(k)A(k′) (X̂)(k, k′)

× exp
[
i
(Ek − Ek′)

~
t

]
, (18)

where the matrix elements of̂X,

(X̂)(k, k′) = 〈ψk, X̂ψk′〉 =

+∞∫

−∞
dx ψ̄k(x) xψk′(x),

i.e.,

(X̂)(k, k′) =

0∫

−∞
dx ūk(x) xuk′(x),

are given by the following improper integral (in the ordinary
sense):

(X̂)(k, k′) = −4

∞∫

0

dxx sin(kx) sin(k′x). (19)

This (nonconvergent) integral can also be written in terms of
the Fourier cosine transform

Fc(k) ≡ Fc[f(x)] =

∞∫

0

dx f(x) cos(kx)

(k > 0) [23]:

(X̂)(k, k′) = −2 [Fc(k − k′)− Fc(k + k′)] , (20)

wheref(x) = x. (The latter function is not absolutely inte-
grable over[0,∞); thus, it follows that(X̂)(k, k′) is a diver-
gent quantity). However, if(X̂)(k, k′) is considered to be a
distribution, we obtain

(X̂)(k, k′) = lim
N→∞

−4

N∫

0

dxx sin(kx) sin(k′x)

=
8kk′

(k2 − k′2)2
, (21)

where we have used the following generalized limits:

lim
N→∞

cos [(k ± k′)N ] = 0,

and also
lim

N→∞
sin [(k ± k′)N ] = 0.

These two results are a consequence of the so-called
Riemann-Lebesgue Lemma,i.e.,

b∫

a

dx f(x)
{

cos(Nx)
sin(Nx)

}
= 0,

for N → ∞ (wheref(x) should be an absolutely integrable
function over the interval(a, b)) [24]. Clearly, becauseN is
very large,f(x) does not change significantly whilecos(Nx)
or sin(Nx) are producing cancelling areas [25]. Thus, the re-
sult (21) must be interpreted as

∞∫

0

∞∫

0

dk dk′
( )

(X̂)(k, k′)

=

∞∫

0

∞∫

0

dk dk′
( ) 8kk′

(k2 − k′2)2
, (22)

where we might have a function ofk and/ork′ inside the
parentheses. From Eqs. (18) and (22), we can write a general
expression for the average value of the operatorX̂:

〈X̂〉Ψ =
4~2

M

∞∫

0

∞∫

0

dk dk′

2π
Ā(k)A(k′)

×
√

EkEk′

(Ek − Ek′)
2 exp

[
i
(Ek − Ek′)

~
t

]
, (23)

where we also usedk =
√

2MEk/~, andk′ =
√

2MEk′/~.
Likewise, the mean value of the momentum operator is as
follows:

〈P̂ 〉Ψ =

∞∫

0

∞∫

0

dk dk′

2π
Ā(k)A(k′) (P̂ )(k, k′)

× exp
[
i
(Ek − Ek′)

~
t

]
, (24)

where the matrix elements of̂P ,

(P̂ )(k, k′) = 〈ψk, P̂ψk′〉 = −i~
+∞∫

−∞
dx ψ̄k(x) ψ′k′(x),

i.e.,

(P̂ )(k, k′) =

0∫

−∞
dx ūk(x)u′k′(x),

are given by the following improper integral (in the ordinary
sense):

(P̂ )(k, k′) = i~ 4k′
∞∫

0

dx sin(kx) cos(k′x). (25)
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By also considering(P̂ )(k, k′) as a distribution, we obtain

(P̂ )(k, k′) = lim
N→∞

i~ 4k′
N∫

0

dx sin(kx) cos(k′x)

= i~
4kk′

k2 − k′2
. (26)

This result must be interpreted as

∞∫

0

∞∫

0

dk dk′
( )

(P̂ )(k, k′)

= i~
∞∫

0

∞∫

0

dk dk′
( ) 4kk′

k2 − k′2
. (27)

Now, from Eqs. (24) and (26), we can write a general expres-
sion for the average value of the operatorP̂ :

〈P̂ 〉Ψ = i~ 4

∞∫

0

∞∫

0

dk dk′

2π
Ā(k)A(k′)

×
√

EkEk′

Ek − Ek′
exp

[
i
(Ek − Ek′)

~
t

]
. (28)

Note that the operatorŝX and P̂ act on functions that are
square-integrable onR and (generally) different from zero
only in the semi-spacex < 0.

Clearly, expressions (23) and (28) verify the expected re-
sult:

d

dt
〈X̂〉Ψ =

1
M
〈P̂ 〉Ψ. (29)

Likewise, from Eqs. (17) and (28), another desired result is
obtained:

d

dt
〈P̂ 〉Ψ = 〈F̂ 〉Ψ. (30)

In this manner, the Ehrenfest theorem for a particle-in-an-
infinite-step-potential has been explicitly confirmed for the
general stateΨ given by Eq. (11).

4. Particle-on-a-half-line

In this section, we begin by presenting the formal time deriva-
tives of the mean values of the position (x̂ = x) and momen-
tum (p̂ = −i~∂/∂x) operators for a particle-on-a-half-line
(x ∈ (−∞, 0] ≡ Ω). The formal computation of these deriva-
tives for a particle living in the entire real line lead us to the
standard Ehrenfest theorem (provided that the state and its
derivative tend to zero at infinity) [26]. For a particle moving
in a closed interval (i.e., in a box), a strictly formal study of
the quantitiesd〈x̂〉/dt andd〈p̂〉/dt as well their correspond-
ing boundary terms has been recently made [27].

Let ô be a time-independent operator (such asx̂ or p̂).
The time derivative of this operator’s mean value〈ô〉u =
〈u, ôu〉 in the normalized stateu = u(x, t) ∈ L2(Ω),

which evolves in time according to the Schrödinger equation
∂u/∂t = −iĥu/~ (the Hamiltonian operator is

ĥ = − ~2

2M

∂2

∂x2
+ ϕ(x), (31)

andϕ(x) is the external potential insideΩ), can be calculated
as follows:

d

dt
〈ô〉u =

〈
∂u

∂t
, ôu

〉
+

〈
u, ô

∂u

∂t

〉

=
i

~
〈ĥu, ôu〉 − i

~
〈u, ôĥu〉

=
i

~

(
〈ĥu, ôu〉 − 〈u, ĥôu〉

)
+

i

~
〈u, [ĥ, ô]u〉, (32)

where[ĥ, ô] = ĥô − ôĥ, as usual. In the case whereô = x̂,
the following results are obtained

〈ĥu, x̂u〉 − 〈u, ĥx̂u〉

= − ~2

2M

[
x

(
u

∂ū

∂x
− ū

∂u

∂x

)
− ūu

]∣∣∣∣
0

−∞
, (33)

and
〈u, [ĥ, x̂]u〉 = − i~

M
〈p̂〉u. (34)

For the (free) particle-on-a-half-line, we takeϕ(x) = 0.
Moreover, we impose the Dirichlet boundary condition,
u(0, t) = 0; however, we also expect thatu(−∞, t) tends
strongly to zero. These boundary conditions imply that the
boundary term in (33) is zero. Note that, with the Dirichlet
boundary condition atx = 0 (and, as usual, ignoring the ex-
act behaviour of the functions in question atx = −∞, i.e.,
by assuming that these are essentially normalized functions
in Ω), the operatorŝp and ĥ (in addition to x̂) are Hermi-
tian. Moreover,̂h is also self-adjoint; in fact, there exists a
one-parameter family of self-adjoint Hamiltonians (see, for
example, the pedagogical Refs. 7 and 28). However, the mo-
mentum operator is not self-adjoint and has no self-adjoint
extension [7]. After substituting Eqs. (33) and (34) into
Eq. (32) (withô = x̂), we obtain the expected result:

d

dt
〈x̂〉u =

1
M
〈p̂〉u. (35)

Likewise, in the case wherêo = p̂, the following results are
obtained:

〈ĥu, p̂u〉 − 〈u, ĥp̂u〉

= i~
~2

2m

(
∂u

∂x

∂ū

∂x
− ū

∂2u

∂x2

)∣∣∣∣
0

−∞
, (36)

and

〈u, [ĥ, p̂]u〉 = i~
〈

dϕ

dx

〉

u

= −i~〈f̂〉u. (37)

wheref̂ = −dϕ(x)/dx is the external classical force upon
the particle on the half-line. By substituting Eqs. (36)
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and (37) into Eq. (32) (witĥo = p̂) and after impos-
ing ϕ(x) = 0 (⇒ f̂ = 0) and the boundary conditions
u(0, t) = 0 andu(−∞, t) = 0, we obtain the following re-
sult:

d

dt
〈p̂〉u = − ~2

2M

∣∣∣∣
∂u

∂x

∣∣∣∣
2
∣∣∣∣∣

0

−∞
. (38)

If the wave function u = u(x, t) tends to zero for
x → −∞, at least as| x |− 1

2−ε with ε > 0 (and therefore
u ∈ L2(Ω)), then its derivative∂u(x, t)/∂x also tends to
zero there. Hence, relation (38) reduces to

d

dt
〈p̂〉u = − ~2

2M

∣∣∣∣
∂u

∂x

∣∣∣∣
2
∣∣∣∣∣
(x=0)

(39)

This specific result has been previously noted [15, 29]. No-
tice that the right-hand side of Eq. (38) can be written as the
mean value of the (nonlocal) quantum force

fB = fB(x, t) ≡ − ~2

2M

1
|u|2

∂

∂x

∣∣∣∣
∂u

∂x

∣∣∣∣
2

. (40)

Because

〈fB〉u =
∫

Ω

dx fB(x, t) |u(x, t)|2

is always equal to a certain quantity evaluated at one end (say,
x = 0) minus the same quantity evaluated at the other end
(x = −∞), fB can be considered a boundary quantum force.
Thus, in this case, the Ehrenfest theorem consists of Eq. (35)
and the following expression:

d

dt
〈p̂〉u = 〈fB〉u. (41)

Note that, for a particle-in-an-infinite-step-potential (i.e.,
u → Ψ, (x = 0) → (x = +∞)), the boundary term
in (36) is zero (i.e., 〈fB〉Ψ = 0). In fact, in the open in-
tervalΩ = (−∞,+∞), Ψ and its derivative∂Ψ/∂x tend to
zero forx → ±∞.

Let us write the wave packetu = u(x, t) in the following
form:

u(x, t) =

∞∫

0

dk√
2π

A(k)uk(x) exp
(
−i

Ek

~
t

)

(−∞ < x ≤ 0), (42)

where the eigenfunctionsuk(x) are given in Eq. (13).
Clearly, the general stateΨ(x, t) given in Eq. (11) can be
written as follows (see Eq. (12)):Ψ(x, t) = u(x, t)Θ(−x).
Hence, the mean values,〈X̂〉Ψ and〈P̂ 〉Ψ, are equal to〈x̂〉u

and〈p̂〉u, respectively. Thus, Eqs. (29) and (35) are equiv-
alent. Now, by substituting the wave packetu(x, t) into the
right-hand-side of Eq. (39), we obtain:

〈fB〉u = −4

∞∫

0

∞∫

0

dk dk′

2π
Ā(k)A(k′)

×
√

EkEk′ exp
[
i
(Ek − Ek′)

~
t

]
. (43)

This result is precisely the mean value〈F̂ 〉Ψ for a particle-in-
an-infinite-step-potential (see Eq. (17)). This is an important
result of our paper. Consequently, Eqs. (30) and (41) are also
equivalent. Final note: we very recently learned of Ref. 30 in
which it was proved that the right-hand side of formula (39)
is equal to the mean value of the external classical force for
a particle-in-an-infinite-step-potential (F̂ = −dV (x)/dx).
However, in that reference, this specific result was directly
obtained by multiplying the Schrödinger equation forΨ by
∂Ψ̄/∂x, adding the respective complex conjugate relation,
and integrating each term of the resulting expression over a
small interval(−ε,+ε), ε → 0 [30].

5. Conclusions

We have studied the Ehrenfest theorem and the issue of aver-
age forces for a particle ultimately restricted to a semi-infinite
interval by an impenetrable wall in one dimension (inside the
latter region, our particle is a free particle after all). We have
noticed two ways to achieve that restriction. One of these
leads us to the particle-in-an-infinite-step-potential, and we
inevitably have the Dirichlet boundary condition (in our pa-
per, atx = 0). The other method leads us to the particle-
on-a-half-line, and the Dirichlet boundary condition is just
one more condition. In fact, there exists a one-parameter
family of boundary conditions for the (self-adjoint) Hamilto-
nian for a particle-on-a-half-line. In each situation, we have
shown that the mean values of the position, momentum and
force, as functions of time, verify an Ehrenfest theorem that
makes sense (the state of the particle being in each case a gen-
eral wave packet that is a continuous superposition of energy
eigenstates for the respective Hamiltonian). However, the in-
volved force is not the same in each case. In fact, we have
the usual external classical force in the first case and a type of
nonlocal boundary quantum force in the second case. In spite
of these differences, the corresponding mean values of these
quantities give the same results. Accordingly, the Ehrenfest
equations in the two situations are equivalent, and the inter-
nal consistency of the formalism of quantum mechanics is
assured. We hope that our article will be of genuine interest
to all those who are interested in the fundamental aspects of
quantum mechanics.
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Classical path from quantum motion for a particle in a transparent box
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We consider the problem of a free particle inside a one-dimensional box with transparent walls (or equiva-
lently, along a circle with a constant speed) and discuss the classical and quantum descriptions of the problem.
After calculating the mean value of the position operator in a time-dependent normalized complex general state
and the Fourier series of the function position, we explicitly prove that these two quantities are in accordance by
(essentially) imposing the approximation of high principal quantum numbers on the mean value. The presenta-
tion is accessible to advanced undergraduate students with a knowledge of the basic ideas of quantum mechanics.
Keywords: correspondence principle, classical limit, Ehrenfest theorem.

Consideramos o problema de uma part́ıcula livre no interior de uma caixa unidimensional com paredes trans-
parentes (ou equivalentemente, ao longo de um ćırculo com uma velocidade constante) e discutimos as descrições
clássica e quântica do problema. Depois de calcular o valor médio do operador da posição num estado geral
complexo normalizado dependente do tempo e a série de Fourier da função de posição, provamos explicitamente
que estas duas quantidades estão em correspondência se (essencialmente) impusermos sobre o valor médio a apro-
ximação dos números quânticos principais elevados. A apresentação é acesśıvel a alunos de graduação avançados
com conhecimento das idéias básicas da mecânica quântica.
Palavras-chave: prinćıpio da correspondência, limite clássico, teorema de Ehrenfest.

1. Introduction

As typically stated in the field of quantum physics,
classical mechanics can be obtained from quantum me-
chanics by imposing mathematical limits. This general
statement is called the correspondence principle. Two
different formulations or (non-equivalent) limits that
give form to the aforementioned principle are commonly
found in the literature: (i) the Planck formulation em-
ploys the classical or quasi-classical limit ~ → 0, and
(ii) in the Bohr formulation, the large principal quan-
tum number limit n → ∞ is applied. Some physicists
believe (and we agree) that the most meaningful prin-
ciple is the combination of (i) and (ii) together with
the restriction n~ = constant. In fact, according to the
Bohr-Sommerfeld-Wilson (BSW) quantization rule, the
latter constant is proportional to the classical action J

n~ =
1

2π

∮
dx p(x) =

J

2π
, (1)

(where p(x) is the classical momentum, and the integral
is obtained over the entire period of motion). Some par-
ticularly useful descriptions of these fundamental issues
are provided in Refs. [1–6] (to mention only a few).

As is well known, the Ehrenfest theorem states that
the mean values of the position and momentum opera-
tors (in the time-dependent normalized complex gene-
ral state Ψ = Ψ(x, t)) ⟨x̂⟩(t) = ⟨Ψ, x̂Ψ⟩ and ⟨p̂⟩(t) =
⟨Ψ, p̂Ψ⟩ satisfy (essentially) the same equations of mo-
tion that the classical position and momentum (x(t)
and p(t), respectively) satisfy. This theorem can be
properly verified in a straightforward manner when the
potential energy function is well behaved. The most
common example is the potential energy of the simple
harmonic oscillator [7]. In other cases, such as the infi-
nite well and infinite step potentials, verification is pro-
blematic [8–11]. Although the Ehrenfest theorem pro-
vides a (formal) general relationship between classical
and quantum dynamics, it does not necessarily (neither
sufficiently) characterize the classical regime [12]. Cer-
tainly, using only the aforementioned theorem, one can-
not state that the mean values ⟨x̂⟩(t) and ⟨p̂⟩(t) are
always equal to the functions x(t) and p(t); however,
this statement does hold true in the limit n→ ∞ (for a
general discussion of the behaviour of a physical quan-
tity for high values of the quantum number n, see, for
example, Ref. [13]). In fact, this specific aspect of the
relationship between classical and quantum motion has

1E-mail: salvatore.devincenzo@ucv.ve.
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been considered to some extent in a few cases, such as
the free particle and the particle in the harmonic oscil-
lator potential [14]. The case of the free particle inside
an impenetrable box (or in an infinite potential well)
has also been treated [15–17]. Specifically, Ref. [15] ex-
plicitly proved that the mean value ⟨x̂⟩(t) matches the
classical path x(t) in the approximation of high princi-
pal quantum numbers.

Inspired by the results provided in Ref. [15] (and by
the general procedure discussed in Ref. [13]), the aim of
the present paper is to explicitly prove that, in the case
of a particle in a penetrable box (or a box with transpa-
rent walls), the functions of time, ⟨x̂⟩(t) and x(t), are in
agreement when n is high (we must also appeal to some
semi-classical arguments, of course). In this problem,
the classical particle disappears upon reaching a wall
(say, at x = a) and then appears at the other end (say,
at x = 0), and it does so without changing its velocity.
This situation could be physically achieved if the move-
ment is more like that of a particle along a circle with
radius a and a constant speed (this is true because a
circle can be considered an interval with its ends glued
together). The latter two classical movements (in a box
or in a circle) correspond to that of a quantum parti-
cle described by the free Hamiltonian operator (i.e., the
kinetic energy operator) with standard periodic boun-
dary conditions (which are imposed at the ends of the
box or at any point along the circle). The quantum case
of a particle in a transparent box has been previously
considered to some extent. For example, briefly in an
interesting study on Heisenberg’s equations of motion
for the particle confined to a box [18]; as an example
to illustrate the agreement between the periodic mo-
tion of classical particles and quantum jumps for large
principal quantum numbers [19] (to mention only two
examples). The present article is organized as follows:
in section 2, we introduce and discuss the classical and
quantum versions of the problem at hand. In section 3,
we explicitly prove that ⟨x̂⟩(t) and x(t) are in agreement
by imposing the approximation of high principal quan-
tum numbers on the mean value. Finally, we present
concluding remarks in section 4.

2. Classical and quantum descriptions

Let us begin by considering classical motion: we have a
free particle of mass µ that resides in a one-dimensional
box but is not confined to the box, i.e., the walls at
x = 0 and x = a are transparent (the potential, U(x),
is zero inside the box). In this situation, we assume that
the particle starts from x = 0 (for example), reaches the
wall at x = a and then reappears at x = 0 (with the
same velocity throughout). The extended position as a
function of time x(t) is periodic and discontinuous and

can be written as:

x(t) =
+∞∑

r=−∞
(vt− rvT ) [Θ(t− rT )−Θ(t− (r + 1)T )].

(2)
Here, Θ(y) is the Heaviside unit step function (Θ(y >
0) = 1 and Θ(y < 0) = 0), v > 0 is the speed of
the particle and T is the period. In each time interval
(rT < t < (r + 1)T ), the extended position is simply
x(t) = vt− rvT , where r is an integer (thus, all discon-
tinuities occur at t = rT ). For example, the solution at
t ∈ (0, T ) (r = 0) is x(t) = vt. At the end of each time
interval, we must also enforce (i.e., when r is given),
the conditions x(rT ) = 0 and x((r + 1)T ) = vT = a.
Moreover, if the particle starts at t = 0 from x = 0
(and begins to move towards x = a), then the sum in
Eq. (2) should begin at r = 0. In this case, the solution
of the equation of motion, x(t), satisfies the condition
x(t ≤ 0) = 0. Clearly, the periodic function x(t) in
Eq. (2) (with t ∈ (−∞,+∞)) can be expanded in a
Fourier series

x(t) =
a

2
+ i

a

2π

+∞∑
(0̸=)τ=−∞

1

τ
exp

(
i
2πτ

T
t

)
. (3)

The series in Eq. (3) seems complex but is actually
real-valued (of course, a complex solution x(t) is not
entirely acceptable as a classical trajectory). Moreover,
if the particle is moving from right to left instead of
moving from left to right (say, starting at x = a), the
Fourier series associated with the corresponding exten-
ded position is given by Eq. (3), but the (classical)
amplitude (for τ ̸= 0) of ia/2πτ changes to −ia/2πτ .

The quantum results that are relevant to the dis-
cussion at hand include the following: first, for a free
particle in a transparent box with a width of a, the
Hamiltonian operator is

Ĥ =
p̂2

2µ
=

1

2µ

(
−i~ ∂

∂x

)2

= − ~2

2µ

∂2

∂x2
. (4)

This operator (essentially) acts on functions Ψ =
Ψ(x, t), which belong to the Hilbert space of square-
integrable functions on the interval 0 ≤ x ≤ a and
whose derivatives are absolutely continuous. It is
natural to include the periodic boundary condition,
Ψ(0, t) = Ψ(a, t) and Ψx(0, t) = Ψx(a, t) (where, as
usual, Ψx ≡ ∂Ψ/∂x) in the domain of Ĥ. With these
boundary conditions, the Hamiltonian is self-adjoint,
its spectrum is purely discrete and doubly degenerate
(with the exception of the ground state), and their ei-
genfunctions form an orthonormal basis [20, 21]. Pre-
cisely, the (complex) orthonormalized eigenfunctions of
Ĥ are also eigenfunctions of the momentum operator p̂,
and can be written separately as follows:

(i) Eigenfunctions of p̂ with eigenvalues pn =
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2π~n/a

ϕn(x) =
1√
a
exp

(
i
2πn

a
x

)
,

En =
~2

2µ

(
2πn

a

)2

, n = 1, 2, 3, . . . . (5)

Each function ϕn(x) is a stationary plane wave propa-
gating to the right.

(ii) Eigenfunctions of p̂ but with eigenvalues
pn = −2π~n/a

χn(x) =
1√
a
exp

(
−i2πn

a
x

)
,

En =
~2

2µ

(
2πn

a

)2

, n = 1, 2, 3, . . . . (6)

Each function χn(x) is a stationary plane wave propa-
gating to the left.

Finally, the eigenfunction of Ĥ to the ground state
can be expressed as

ψ0(x) =
1√
a
, E0 = 0. (7)

This is also an eigenfunction of p̂ with an eigenva-
lue of p0 = 0. All of these eigenfunctions specifi-
cally verify the following orthonormality relationships:

⟨ϕn, ϕm⟩ = δn,m, ⟨χn, χm⟩ = δn,m, ⟨ψ0, ψ0⟩ = 1, and
⟨ϕn, χm⟩ = ⟨ϕn, ψ0⟩ = ⟨χn, ψ0⟩ = 0. Let us note in pas-
sing that in this problem, the BSW quantization rule
(given by Eq. (1)) also provides the exact quantum
mechanical energies (see, for example, Ref. [19]).

3. Approximation of high principal
quantum number to ⟨x̂⟩(t)

Let us now consider the following complex general state
Ψ = Ψ(x, t), which is assumed to be normalized

Ψ(x, t) =
∞∑

n=1

A−nχn(x) exp

(
−iEn

~
t

)
+

A0ψ0(x) exp

(
−iEn

~
t

)
+

∞∑
n=1

Anϕn(x) exp

(
−iEn

~
t

)
. (8)

Precisely, due to the normalization condition, ∥ Ψ ∥2=
⟨Ψ,Ψ⟩ = 1, the (complex) constant coefficients of the
Fourier expansion in Eq. (8) (A−n, A0 and An) must
satisfy the following relation

∞∑
n=1

| A−n |2 + | A0 |2 +
∞∑

n=1

| An |2= 1. (9)

⌋

Now, by calculating the mean value of the position operator, x̂ = x, in the general state given in Eq. (8),

⟨x̂⟩(t) = ⟨Ψ, x̂Ψ⟩ =
∫ a

0

dx Ψ̄(x, t)xΨ(x, t) =

∫ a

0

dxx | Ψ(x, t) |2, (10)

we obtain the following expression (throughout the article, the horizontal bar represents complex conjugation)

⟨x̂⟩(t) = a

2
+i

a

2π

∞∑
(m ̸=)n=0

∞∑
m=0

ĀnAm
1

n−m
exp

[
i
(En − Em)

~
t

]
−i a

2π

∞∑
(m ̸=)n=0

∞∑
m=0

Ā−nA−m
1

n−m
exp

[
i
(En − Em)

~
t

]

− i
a

2π

∞∑
n=1

∞∑
m=1

Ā−nAm
1

n+m
exp

[
i
(En − Em)

~
t

]
+ i

a

2π

∞∑
n=1

∞∑
m=1

A−nĀm
1

n+m
exp

[
−i (En − Em)

~
t

]
. (11)

In the latter expression, we made use of Eq. (9). Also note that the last two terms in Eq. (11) are complex
conjugate of each other.

Because we consider that the classical particle is moving from left to right, we must choose the part of ⟨x̂⟩(t)
that corresponds to the quantum motion of plane waves propagating to the right. Hence, in the expansion given in
Eq. (8), we must impose the condition A−n = 0, where n = 1, 2, 3, . . .. Therefore, the infinite series for ⟨x̂⟩(t) takes
the form

⟨x̂⟩(t) = a

2
+ i

a

2π

∞∑
(m ̸=)n=0

∞∑
m=0

ĀnAm
1

n−m
exp

[
i
(En − Em)

~
t

]
. (12)

Now, the constants An satisfy the following relation (see Eq. (9))

| A0 |2 +
∞∑

n=1

| An |2=
∞∑

n=0

ĀnAn = 1. (13)
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By introducing τ ≡ n −m (⇒ m = n − τ) and changing the sum over m in Eq. (12) to a sum over τ (note that,
because n = 1, 2, 3, . . . and m = 1, 2, 3, . . . with n ̸= m, then τ = . . .− 2,−1,+1,+2, . . .. Thus, τ ̸= 0), we can write
⟨x̂⟩(t) as follows:

⟨x̂⟩(t) = a

2
+ i

a

2π

+∞∑
(0 ̸=)τ=−∞

1

τ

∞∑
n=0

ĀnAn−τ exp

[
i
(En − En−τ )

~
t

]
. (14)

In the latter expression, we also changed the order of the sums.

⌈

Using the expression for the allowed energy values
given in Eq. (5), we obtained the following result

En − En−τ

~
= 2π

1
µa2

2πn~

τ
(
1− τ

2n

)
. (15)

Clearly, when n ≫ 1 or equally when n ≈ n − τ or
n≫ τ , the following approximation can be obtained

En − En−τ

~
≈ 2π

1
µa2

2πn~

τ =
2πτ

T (n)
. (16)

Thus, we identified T (n) as the period of the classi-
cal particle (as a function of n). In fact, from the BSW
quantization rule (see Eq. (1)), the following result was
obtained ∮

dx p(x) = µva =
µa2

T (n)
= 2πn~. (17)

Note that, strictly speaking, in the limit as n→ ∞, one
obtains (En − En−τ )/~ → ∞ (the same applies to the
model of the particle in the box with rigid walls [17]).
In other words, the separation between two neighbou-
ring energy levels does not become small as n becomes
large. However, the results expressed in Eq. (16) make
sense because n~ = constant (and we are assuming
that ~ → 0). Nevertheless, the relative spacing satisfies
(En+1 − En)/En → 0 for large En. This (apparently)
explains why cuantization is not observed at high ener-
gies [22]. On the other hand, we may assume that the
sum over n in Eq. (14) is significant only around (say)
n = N , such that N ≫ 1. By substituting Eq. (16)
into Eq. (14) (and using the approximation n−τ ≈ n),
we obtain

⌋

⟨x̂⟩(t) ≈ a

2
+ i

a

2π

+∞∑
(0 ̸=)τ=−∞

1

τ

∑
n around N

ĀnAn exp

[
i
2πτ

T (n)
t

]
. (18)

⌈

However, in the interval of n (in the neighbourhood
of N), we assumed that T (n) did not change signifi-
cantly (in fact, T (n) ≈ T = a

√
µ/2E, where E is the

energy of the classical particle). Therefore the expo-
nential in Eq. (18) can be separated from the sum.
Precisely, due to the restriction given by Eq. (13), the
sum takes on a value of one; thus, we recovered the
expected classical result

⟨x̂⟩(t) ≈ a

2
+ i

a

2π

+∞∑
(0 ̸=)τ=−∞

1

τ
exp

(
i
2πτ

T
t

)
= x(t).

(19)

4. Concluding remarks

Although the separation between the eigenvalues of
energy tends to increase with an increase in the value of
n, the semi-classical arguments we used to obtain the
result given in Eq. (19) appear to be physically reaso-
nable. In fact, we explicitly proved that the quantum
average, ⟨x̂⟩(t), and the classical path, x(t), are in agre-
ement. The mean value, ⟨x̂⟩(t), was initially calculated

in a state that included the general superposition of
energy eigenstates but was finally converted (using the
applied approximation) into a state formed by a num-
ber of stationary states with quantum numbers n in a
band with a narrow width around n = N ≫ 1 (a semi-
classical state, of course). Certainly, for the problem
at hand, classical-quantum correspondence was easy to
verify because the Fourier series associated with the
position of the particle was easy to calculate. Unfor-
tunately, this is not always the case. We believe that
the issues presented herein will be attractive to advan-
ced undergraduate students, as well as to teachers and
lecturers.
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