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ESSAY
�

I. Introduction
First, let us introduce the following four Hermitian matrix-valued (differential) Dirac operators:

ĥA = −i~c Γ̂A
∂

∂x
, (A = 1, 2, 3, 4) , (1)

where x ∈ Ω = [a, b]. We assume that each ĥA acts on two-component column vectors (or Dirac
wave functions in (1+1) dimensions) ψ = ψ(t, x) = [ψ1(t, x) ψ2(t, x) ]ᵀ (where the symbol ᵀ
represents the transpose of a matrix), which belong to the Hilbert spaceH = L2(Ω)⊕L2(Ω) (note
that ĥAψ also belongs toH). The scalar product of such vectors is denoted by 〈ψ, ξ〉 =

�
Ω dxψ

†ξ
(where the symbol † denotes the adjoint of a matrix). Each self-adjoint (⇒Hermitian) operator
ĥA has a proper domain D(ĥA) ⊂ H, i.e., the set of functions on which ĥA can act, which
includes a general boundary condition. Note: in this essay we use the term Hermitian to refer
to differential operators that are called symmetric (or formally self-adjoint) in the mathematical
jargon. The 2× 2 (Hermitian) matrices Γ̂A = Γ̂†A are given by

Γ̂1 = 1̂, Γ̂2 = α̂, Γ̂3 = β̂, Γ̂4 = iβ̂α̂. (2)

As is usually the case, the Dirac matrices α̂ = α̂† and β̂ = β̂† satisfy the following relations [1]:

α̂β̂ + β̂α̂ = 0, α̂2 = β̂2 = 1̂. (3)

As a consequence, the matrices Γ̂A also have the following properties: (i) Γ̂2
A = 1̂; (ii) Γ̂BΓ̂AΓ̂B =

−Γ̂A for A 6= B and A,B = 2, 3, 4; therefore, (iii) tr(Γ̂A) = 0 (where tr denotes the trace of
a matrix); and (iv) they are all linearly independent, and therefore, any 2 × 2 matrix can be
expanded in terms of the Γ̂A. In other words, we can write an arbitrary 2× 2 matrix, say Ĉ, as

Ĉ =
4∑

A=1
CAΓ̂A, (4)
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where CA = tr(Γ̂AĈ)/2 (for a good discussion of such matrix properties, see, for example, Ref.
[2], p. 132). Naturally, the algebra generated by the Γ̂A is a Clifford algebra.

Let us now introduce the following four real-valued quantities:

CA = cψ†Γ̂Aψ. (5)

These functions are usually known as bilinear densities, but they are also called bilinear covariants
because they possess definite transformation properties under (proper orthochronous) Lorentz
transformations and space inversion, in (1+1) dimensions. Specifically, the time component of
a Lorentz 2-vector is C1 = c%, where % = %(t, x) = ψ†ψ is the probability density. The spatial
component of a 2-vector is C2 = j, where j = j(t, x) = cψ†α̂ψ is the probability current density.
Furthermore, the scalar is C3 ≡ cs = cψ†β̂ψ, and the pseudo-scalar is C4 ≡ cw = cψ†iβ̂α̂ψ [3].
In this essay, we do not assign specific names to the densities s and w. Notice that if the quantities
CA given in Eq. (5) are precisely the coefficients of Ĉ in the expansion (4), then the matrix Ĉ
can be written as Ĉ = 2cψψ†. In effect, CA = tr(Γ̂A2cψψ†)/2 = tr(cΓ̂Aψψ†) = tr(cψ†Γ̂Aψ) =
cψ†Γ̂Aψ. Moreover, the following properties of Ĉ can be verified: (i) (Ĉ/2c%)† = Ĉ/2c%, (ii)
(Ĉ/2c%)2 = Ĉ/2c%, and (iii) tr(Ĉ/2c%)2 = 1. Hence, Ĉ/2c% is a density matrix and also a
projector; therefore, it can represent the quantum state of the system, as well [4]. It is worth
noting that property (ii) implies that (c%)2 = (cs)2 + j2 + (cw)2, i.e., only three of the bilinear
densities are independent [3].

As is well known, if we have two sets of two Dirac matrices, {α̂, β̂} and {α̂′, β̂′}, that satisfy
the algebraic relations given in Eq. (3), then there exists a (constant) non-singular matrix Ŝ
(defined to within a multiplicative constant) such that

α̂′ = Ŝα̂Ŝ−1, β̂′ = Ŝβ̂Ŝ−1 (6)

(and therefore also Γ̂′A = Ŝ Γ̂A Ŝ−1). Indeed, Ŝ must be a unitary matrix to preserve the
hermiticity of the Dirac matrices. Thus, distinct sets of Dirac matrices that satisfy (6) are referred
to as sets of Dirac matrices in distinct (but trivially related) representations. In this essay, we use
three of these representations, which are usually referred to as (i) the standard (or Dirac-Pauli)
representation (SR), {α̂, β̂} = {σ̂x, σ̂z}; (ii) the Weyl (or spinor, or chiral) representation (WR),
{α̂′, β̂′} = {σ̂z, σ̂x}; and (iii) the supersymmetric representation (SSR), {α̂′, β̂′} = {σ̂x, σ̂y}.
As we will see below, in (1+1) dimensions the last could also be considered to be a Majorana
representation [5]. The SR and the WR are related through the (unitary) matrix

Ŝ = 1√
2

(σ̂x + σ̂z). (7)

Similarly, the SR and the SSR are related via the (unitary) matrix

Ŝ = 1√
2

(1̂ + σ̂yσ̂z). (8)

Likewise, suppose that we have the following two (equivalent) relativistic wave equations,
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each in its own representation:

Ĥψ = i~∂ψ
∂t
, Ĥ ′ψ′ = i~∂ψ

′

∂t
, (9)

where, for example,

Ĥ = −i~cα̂ ∂

∂x
+ mc2β̂ + U(x), Ĥ ′ = −i~cα̂′ ∂

∂x
+ mc2β̂′ + U(x) (10)

are the usual Dirac Hamiltonian operators (U(x) is the potential-energy function, and it is real
and independent of time) and the Dirac matrices are related as shown in Eq. (6). Then, the
Dirac wave functions ψ and ψ′ are related by

ψ′ = Ŝψ. (11)

If the operators Ĥ and Ĥ ′ in (10) are replaced by any of the operators ĥA, the result given
by Eq. (11) remains true. In the SR, a wave function is usually written as ψ = ψ(t, x) =
[ϕ(t, x)χ(t, x) ]ᵀ, where ϕ is the so-called large component of ψ and χ is the small component (for
positive energies, the upper component is “larger” than the lower component in the nonrelativistic
limit). In the WR, we write the wave function as ψ′ = ψ′(t, x) = [ϕ1(t, x)ϕ2(t, x) ]ᵀ. Using Eqs.
(7) and (11), we can write the relation between the components of ψ and ψ′ as follows:[

ϕ1
ϕ2

]
= 1√

2

[
1 1
1 −1

] [
ϕ
χ

]
. (12)

Likewise, in the SSR, we write the wavefunction as ψ′ = ψ′(t, x) = [φ1(t, x) φ2(t, x) ]ᵀ. The
relation between the components of the latter wave function and those of the wave function in
the SR can be obtained using Eqs. (8) and (11):[

φ1
φ2

]
= 1√

2

[
1 i
i 1

] [
ϕ
χ

]
. (13)

Using Eqs. (12) and (13), we can also write the following expression:[
φ1
φ2

]
= 1

2

[
1 + i 1− i
1 + i −(1− i)

] [
ϕ1
ϕ2

]
, (14)

which expresses the relation between the components of the wave function in the SSR and those
of the wave function in the WR. Note that because the matrix Ŝ in Eq. (11) is unitary, the
bilinear densities in one representation (see Eq. (5)) are the same in any other representation. In
effect, C ′A = cψ′† Γ̂′A ψ′ = cψ†Ŝ†Ŝ Γ̂A Ŝ†Ŝψ = CA. It is also worth mentioning that in the SSR,
the free Dirac equation can be written as follows (see Eqs. (9) and (10)):

−i~cσ̂x
∂ψ′

∂x
+ mc2σ̂yψ

′ = i~∂ψ
′

∂t
⇒

(
1
c

∂

∂t
+ σ̂x

∂

∂x
+ mc

~
iσ̂y
)
ψ′ = 0,
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that is to say, the latter equation is real, i.e., ψ′ can be chosen to be real. In this regard, the
SSR is also a Majorana representation (further details concerning the Majorana representation
can be found, for example, in Ref. [5]). As expected, the physical predictions do not depend
on the chosen representation, even though wave functions describing the same physical situation
take different forms in different representations.

�
II. Dirac operators
In this section, we first present, together with the most essential results associated with the
hermiticity of each operator ĥA (see also Ref. [6]), known families of general boundary conditions
for ĥ1 and ĥ2 in the WR under the assumption that these operators are self-adjoint. Then,
using only the general boundary condition for ĥ2 and changes of representation among the Dirac
matrices, we also obtain general boundary conditions for ĥ3 and ĥ4 in the WR. In the latter
procedure, we need only consider the SR, the WR and the SSR. At the end of the section, using
these results, we also write general boundary conditions for each of these four operators in the
SR.

(a) First, the operator ĥ1 is essentially the (Dirac) momentum operator P̂ ; in fact,

ĥ1 = −i~c 1̂ ∂

∂x
(= cP̂ = c1̂p̂). (15)

In the latter expression, we distinguish between P̂ = −i~1̂∂/∂x, which is, in the end, a 2 × 2
matrix, and p̂ = −i~∂/∂x, which is usually considered to be the momentum operator. Note
that ĥ1 does not change if we change the representation (the identity matrix 1̂ is manifestly
independent of the representation). This operator satisfies the following relation:

〈ψ, ĥ1ξ〉 − 〈ĥ1ψ, ξ〉 = −i~c
[
ψ†ξ

]∣∣∣b
a
, (16)

where [ f ]|ba = f(t, b)−f(t, a), and ψ and ξ are vectors in H. If the boundary conditions imposed
on ψ and ξ lead to the cancellation of the term evaluated at the endpoints of the interval Ω, we
can write relation (16) as 〈ψ, ĥ1ξ〉 = 〈ĥ1ψ, ξ〉. In this case, ĥ1 is a Hermitian operator. If we
impose ψ = ξ in this last relation and in Eq. (16), we obtain the following condition:

[
ψ†ψ

]∣∣∣b
a

= [ % ]|ba = 0 (⇒ %(b) = %(a)), (17)

i.e., C1(b) = C1(a). Furthermore, 〈ψ, ĥ1ψ〉 = 〈ĥ1ψ, ψ〉 = 〈ψ, ĥ1ψ〉∗; therefore, Im〈ψ, ĥ1ψ〉 = 0,
i.e., 〈ψ, ĥ1ψ〉 ≡ 〈ĥ1〉ψ ∈ R (the asterisk represents complex conjugation). The requirement given
in Eq. (17) implies that each wavefunction ψ that belongs to the domain D(ĥ1) must obey only
specific boundary conditions at the endpoints of the interval Ω (under the assumption that ĥ1
is also a self-adjoint operator). Indeed, Eq. (17) is satisfied by imposing the following general
boundary condition:

ψ(b) = Û1ψ(a), (18)

where the matrix Û1 is unitary (and therefore, Eq. (18) is a 4-parameter family of boundary
conditions) [7]. In fact, let us consider the following general relation, ψ(b) = M̂ψ(a), where M̂
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is an arbitrary (complex) matrix. By substituting the latter relation into Eq. (17), we obtain
ψ†(a)M̂ †M̂ψ(a)−ψ†(a)ψ(a) = 0; therefore, M̂ †M̂ = 1̂, i.e., M̂ is unitary. The latter result can
also be obtained using the theory of self-adjoint extensions of symmetric operators [8]. In the
WR, we write Eq. (18) as follows:[

ϕ1(b)
ϕ2(b)

]
= Û1

[
ϕ1(a)
ϕ2(a)

]
. (19)

The latter result was derived in detail in Appendix A of Ref. [8].
(b) The operator ĥ2 can be written as

ĥ2 = −i~c α̂ ∂

∂x
(= cα̂p̂), (20)

and it satisfies the following relation:

〈ψ, ĥ2ξ〉 − 〈ĥ2ψ, ξ〉 = −i~c
[
ψ†α̂ξ

]∣∣∣b
a
, (21)

where ψ and ξ are vectors in H. Again, if the boundary conditions imposed on ψ and ξ lead to
the cancellation of the boundary term on the right-hand side of Eq. (21), then the operator ĥ2
is Hermitian, i.e., 〈ψ, ĥ2ξ〉 = 〈ĥ2ψ, ξ〉. If we impose ψ = ξ in this last relation and in Eq. (21),
we obtain the following condition:

c
[
ψ†α̂ψ

]∣∣∣b
a

= [ j ]|ba = 0 (⇒ j(b) = j(a)), (22)

i.e., C2(b) = C2(a). Moreover, 〈ψ, ĥ2ψ〉 = 〈ĥ2ψ, ψ〉 = 〈ψ, ĥ2ψ〉∗; therefore, Im〈ψ, ĥ2ψ〉 = 0,
i.e., 〈ψ, ĥ2ψ〉 ≡ 〈ĥ2〉ψ ∈ R. In addition, the operator ĥ2 is, essentially, self-adjoint on the domain
D(ĥ2) formed by the Dirac wave functions ψ such that ψ ∈ H and ĥ2ψ ∈ H and that satisfy, in
the WR (α̂ = σ̂z), the following general boundary condition [9, 10]:[

ϕ1(b)
ϕ2(a)

]
= Û2

[
ϕ2(b)
ϕ1(a)

]
, (23)

where the matrix Û2 is also unitary. Notice that the results (21)-(23), which are associated with
the hermiticity and the self-adjointness of ĥ2, are clearly also valid for the usual Hamiltonian
operator Ĥ = ĥ2 + mc2β̂ + U(x). In other words, the matrix β̂ does not influence any of
these results (it is also understood that the potential-energy function U(x) that is present in Ĥ
is bounded inside the interval Ω). Thus, the latter result allows us to ensure that the results
associated with ĥ2 are also valid for a Hamiltonian that describes, for example, a massless Dirac
fermion in (1+1) dimensions. In particular, the result given in Eq. (23) in combination with
changes of representations provides all we require to obtain general boundary conditions for ĥ3
and ĥ4 in the WR, as outlined below.

(c) The operator ĥ3 can be written as

ĥ3 = −i~c β̂ ∂

∂x
(= cβ̂p̂), (24)
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and it satisfies the following relation:

〈ψ, ĥ3ξ〉 − 〈ĥ3ψ, ξ〉 = −i~c
[
ψ†β̂ξ

]∣∣∣b
a
, (25)

where ψ and ξ are vectors inH. If, as a result of the boundary conditions imposed on ψ and ξ, the
boundary term in Eq. (25) vanishes, then the operator ĥ3 is Hermitian, i.e., 〈ψ, ĥ3ξ〉 = 〈ĥ3ψ, ξ〉.
By imposing ψ = ξ in this last relation and in Eq. (25), we obtain the following condition:

[
ψ†β̂ψ

]∣∣∣b
a

= [ s ]|ba = 0 (⇒ s(b) = s(a)), (26)

i.e., C3(b) = C3(a). Additionally, 〈ψ, ĥ3ψ〉 = 〈ĥ3ψ, ψ〉 = 〈ψ, ĥ3ψ〉∗; therefore, Im〈ψ, ĥ3ψ〉 = 0,
i.e., 〈ψ, ĥ3ψ〉 ≡ 〈ĥ3〉ψ ∈ R. However, the operator ĥ3 is also self-adjoint on the domain D(ĥ3)
formed by Dirac wave functions ψ such that ψ ∈ H and ĥ3ψ ∈ H and that also satisfy a general
boundary condition. To obtain this general boundary condition in the WR for which the operator
ĥ3 = −i~c β̂ ∂/∂x is self-adjoint, we must exploit the fact that β̂ is precisely σ̂z in the SR. In
other words, ĥ3 in the SR is simply the operator ĥ2 = −i~c α̂ ∂/∂x in the WR (α̂ = σ̂z). In
this manner, we can immediately write the general boundary condition for ĥ3 as follows: first, in
Eq. (23), we make the replacements ϕ1 → ϕ, ϕ2 → χ, and Û2 → Û3 (the latter because we
are interested in the operator ĥ3), and then, we transform into the WR using the inverse of the
unitary transformation given in Eq. (12), i.e., ϕ = (ϕ1 + ϕ2)/

√
2 and χ = (ϕ1 − ϕ2)/

√
2. We

obtain the result [
ϕ1(b) + ϕ2(b)
ϕ1(a)− ϕ2(a)

]
= Û3

[
ϕ1(b)− ϕ2(b)
ϕ1(a) + ϕ2(a)

]
, (27)

where the matrix Û3 is unitary.
(d) The operator ĥ4 can be written as

ĥ4 = −i~c iβ̂α̂ ∂

∂x
(= +ciβ̂α̂p̂), (28)

and it satisfies the following relation:

〈ψ, ĥ4ξ〉 − 〈ĥ4ψ, ξ〉 = −i~c
[
ψ†iβ̂α̂ξ

]∣∣∣b
a
, (29)

where ψ and ξ are vectors in H. If, because of the boundary conditions imposed on ψ and ξ, the
boundary term in Eq. (29) vanishes, then the operator ĥ4 is Hermitian, i.e., 〈ψ, ĥ4ξ〉 = 〈ĥ4ψ, ξ〉.
By imposing ψ = ξ in this last relation and in Eq. (29), we obtain:

[
ψ†iβ̂α̂ψ

]∣∣∣b
a

= [w ]|ba = 0 (⇒ w(b) = w(a)), (30)

i.e., C4(b) = C4(a). Moreover, 〈ψ, ĥ4ψ〉 = 〈ĥ4ψ, ψ〉 = 〈ψ, ĥ4ψ〉∗; therefore, Im〈ψ, ĥ4ψ〉 = 0,
i.e., 〈ψ, ĥ4ψ〉 ≡ 〈ĥ4〉ψ ∈ R. In the same manner as for the other operators we have introduced,
the operator ĥ4 is also self-adjoint on the domain D(ĥ4) formed by Dirac wave functions ψ such
that ψ ∈ H and ĥ4ψ ∈ H and that satisfy a general boundary condition. To obtain this general
boundary condition in the WR for which the operator ĥ4 = −i~c iβ̂α̂ ∂/∂x is self-adjoint, we
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must exploit the fact that iβ̂α̂ is precisely σ̂z in the SSR (i.e., iσ̂yσ̂x = σ̂z). In other words,
ĥ4 in the SSR is simply the operator ĥ2 = −i~c α̂ ∂/∂x in the WR (α̂ = σ̂z). Thus, we can
immediately write the general boundary condition for ĥ4 as follows: first, in Eq. (23), we make
the replacements ϕ1 → φ1, ϕ2 → φ2, and Û2 → Û4 (the latter because we are interested in
the operator ĥ4), and then, we transform into the WR using the unitary transformation given in
Eq. (14), i.e., φ1 = ((1 + i)ϕ1 + (1− i)ϕ2)/2 and φ2 = ((1 + i)ϕ1 − (1− i)ϕ2)/2. After some
simplifications, we obtain[

ϕ1(b)− iϕ2(b)
ϕ1(a) + iϕ2(a)

]
= Û4

[
ϕ1(b) + iϕ2(b)
ϕ1(a)− iϕ2(a)

]
, (31)

where the matrix Û4 is unitary. Incidentally, the latter boundary condition was obtained in Ref.
[11], although that discussion concerned a Dirac Hamiltonian, which is essentially the same
operator ĥ4 in the WR plus a certain matrix potential.

Likewise, we can explicitly write the most general boundary condition for each of these op-
erators in the SR, which is the most frequently used representation, in part because it is very
convenient for studying the non-relativistic limit [12]. Our results are as follows:

(a) In the SR, we write the boundary condition that belongs to D(ĥ1) as follows:[
ϕ(b)
χ(b)

]
= T̂1

[
ϕ(a)
χ(a)

]
, (32)

where T̂1 = ŜÛ1Ŝ
−1 and Ŝ (= Ŝ−1) is given in Eq. (7). The result expressed by (32) is expected

because ĥ1 is independent of the representation (see Eq. (15)).
(b) Likewise, inside D(ĥ2), we have the following boundary condition:[

ϕ(b) + χ(b)
ϕ(a)− χ(a)

]
= T̂2

[
ϕ(b)− χ(b)
ϕ(a) + χ(a)

]
, (33)

where T̂2 = Û2. This result is easily obtained because we know the general boundary condition
for ĥ2 in the WR (see Eq. (23)); thus, all that is necessary is to transform from the latter
representation into the SR (using Eq. (12)). In the non-relativistic limit, Eq. (33) provides
the most general boundary condition for which the Schrödinger Hamiltonian is self-adjoint. See
Ref. [10] for further details and Ref. [13] for the confirmation of this result (although in the
latter, the equivalent problem of a particle moving on a real line with a point interaction at the
origin was considered). Let us also note in passing that the usual Dirichlet boundary condition,
ψ(a) = ψ(b) = 0, i.e., ϕ(a) = ϕ(b) = 0 and χ(a) = χ(b) = 0, is not included in Eq. (33). In
other words, the operator ĥ2 and the Dirac Hamiltonian Ĥ (see Eq. (10)) are not self-adjoint when
this boundary condition is within their domains; in any case, these two operators can be made
Hermitian by imposing the boundary condition in question (this particular topic was discussed in
Ref. [14]). However, the following boundary conditions, for example, are contained in Eq. (33):
ϕ(a) = ϕ(b) = 0 (T̂2 = −1̂), χ(a) = χ(b) = 0 (T̂2 = +1̂), ψ(a) = ψ(b) (T̂2 = +σ̂x), and
ψ(a) = −ψ(b) (T̂2 = −σ̂x).
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(c) Similarly, inside D(ĥ3), we have the following boundary condition:[
ϕ(b)
χ(a)

]
= T̂3

[
χ(b)
ϕ(a)

]
, (34)

where T̂3 = Û3. We can inmediately write this result because we know the general boundary
condition for ĥ3 = −i~c β̂ ∂/∂x when β̂ = σ̂z (see Eq. (23)), i.e., for ĥ3 in the SR.

(d) Finally, in the domain D(ĥ4), we have the following boundary condition:[
ϕ(b) + iχ(b)
iϕ(a) + χ(a)

]
= T̂4

[
iϕ(b) + χ(b)
ϕ(a) + iχ(a)

]
, (35)

where T̂4 = Û4. We can obtain this result because we know the general boundary condition for
ĥ4 = −i~c iβ̂α̂ ∂/∂x when iβ̂α̂ = σ̂z (see Eq. (23)), i.e., for ĥ4 in the SSR. Thus, all that is
necessary is to transform from the latter representation into the SR (using Eq. (13)).

At this point, certain remarks are in order. Indeed, we could construct different types of general
boundary conditions for each of the operators considered here (some could also be dependent of
four parameters). However, the families of general boundary conditions presented herein possess
the advantage that none of the coefficients in the unitary matrices need be equal to infinity. In
addition, each of these general boundary conditions is the most general that can be written with
only one single matrix boundary condition. These features have been noted in the literature,
especially in the study of the (equivalent) problem of a particle in a line with a point interaction
at the origin (see, for example, Refs. [10, 13, 15]).

�
III. Conclusions
In summary, we have introduced several essential properties associated with the hermiticity and
self-adjointness of four differential Dirac operators, ĥA = −i~c Γ̂A ∂/∂x, for x ∈ Ω = [a, b].
Here, {Γ̂A} is a complete set of 2× 2 matrices: Γ̂1 = 1̂, Γ̂2 = α̂, Γ̂3 = β̂, and Γ̂4 = iβ̂α̂, where
α̂ and β̂ are the usual Dirac matrices. The hermiticity leads to CA(x = b) = CA(x = a), where
the real-valued quantities CA = cψ†Γ̂Aψ, the bilinear densities, are precisely the components of
a Clifford number Ĉ in the basis of the matrices Γ̂A; moreover, Ĉ/2c% is a density matrix (% is
the probability density). The self-adjointness additionally leads to specific families of boundary
conditions, each to be included in its respective domain D(ĥA). In general, because in any
trivial representation the matrices Γ̂2, Γ̂3, and Γ̂4 are (essentially) the three (anticommuting)
Pauli matrices (the latter satisfy σ̂jσ̂k = iσ̂l for cyclic {j, k, l}), the families of general boundary
conditions for the operators ĥ2, ĥ3, and ĥ4 are linked. In particular, because the most general
family of self-adjoint boundary conditions for ĥ2 in the WR (and also for ĥ1) is known, similar
families for ĥ3 and ĥ4 in the WR (using only the aforementioned family for ĥ2 and changes of
representation among the Dirac matrices) can be obtained. From these results, families of general
boundary conditions for all these operators in the SR can also be determined.

Recently, we were also able to obtain boundary conditions for the free Dirac Hamiltonian in
the Foldy-Wouthuysen representation (FWR) from boundary conditions for the free (self-adjoint)
Dirac Hamiltonian in the SR [16]. In fact, these boundary conditions can be obtained because
they are consistent with the self-adjointness of the standard free Dirac Hamiltonian. However,
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given a boundary condition for the standard Dirac Hamiltonian, we could obtain (in certain cases)
two different boundary conditions for the Dirac Hamiltonian in the FWR depending on the sign
of the energy of the state in question.
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