Universidad Central de Venezuela Facultad de Ciencias Escuela de Física

Métodos Matemáticos de la Física II (2424)

http://fisica.ciens.ucv.ve/~svincenz/metodosmatematicosdos.html

Tarea 2

Funciones generalizadas Álgebra y cálculo en la variable compleja

http://fisica.ciens.ucv.ve/~svincenz/metodosmatematicosdos(t2).pdf

- 1°) Algunas transformadas de Fourier: encuentre la transformada de Fourier (generalizada) de las siguientes funciones: (a) x. (b) x^n . (c) $\delta(x)$. (d) $(d^n\delta/dx^n)(x)$. (e) $\delta(x-a)$. (f) $\exp(iax)$. (g) $\sin(ax)$. (h) $\cos(ax)$. Aquí a es real y n es un entero positivo. (i) Una vez más, calcule la transformada de Fourier de la función signo $\operatorname{sgn}(x)$, y luego la de la distribución $\operatorname{P.V.}(1/x)$.
- 2°) **Ejercicios simples:** (a) Demuestre la siguiente propiedad de la delta de Dirac: $\delta(ax) = \delta(x)/|a|$, donde $a \neq 0$. (b) Calcule $\delta[\cos(x)]$ y $\delta[\sin(x)]$.
 - 3°) Diversos problemas sobre números complejos: (a) Demuestre la identidad del paralelogramo:

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2|z_1|^2 + 2|z_2|^2$$
. (3.1)

(b) Demuestre las siguientes desigualdades:

$$Re(z) \le |Re(z)| \le |z|, \tag{3.2}$$

$$Im(z) \le |Im(z)| \le |z|. \tag{3.3}$$

(c) Si usted asocia $z_1=x_1+iy_1$ al vector ${\bf r}_1=x_1\hat{i}+y_1\hat{j}+0\hat{k}$ y analogamente $z_2=x_2+iy_2$ al vector ${\bf r}_2=x_2\hat{i}+y_2\hat{j}+0\hat{k}$. (i) Demuestre que ${\bf r}_1\cdot{\bf r}_2=\mathrm{Re}(z_1\bar{z}_2)$. De esta forma, z_1 es perpendicular a z_2 $(z_1\perp z_2)$ si y solo si $\mathrm{Re}(z_1\bar{z}_2)=0$. Nota: si se verifica $z_1\perp z_2$ entonces se verifica el teorema de Pitágoras $|z_1-z_2|^2=|z_1|^2+|z_2|^2$, en relación con esto, puede demostrar que $iz\perp z$ y |iz|=|z|, asi pues, la multiplicación por i equivale a rotar z en 90° . (ii) Demuestre que ${\bf r}_1\times{\bf r}_2=\mathrm{Im}(z_1\bar{z}_2)\hat{k}$. De esta forma, la condición para que z_1 y z_2 sean paralelos es $\mathrm{Im}(z_1\bar{z}_2)=0$, de hecho, z_1 es paralelo a z_2 si $z_1=tz_2$, donde z_2 0 es:

$$A = \frac{1}{2} |\text{Im}(z_1 \bar{z}_2)|. \tag{3.4}$$

(e) (i) Demuestre la desigualdad triangular:

$$|z_1 + z_2| \le |z_1| + |z_2|. \tag{3.5}$$

(ii) Compruebe que esta desigualdad se puede extender fácilmente para incluir cualquier número de sumandos

$$|z_1 + z_2 + z_3 + \dots| \le |z_1| + |z_2| + |z_3| + \dots$$
 (3.6)

(iii) Compruebe que la cota inferior para $|z_1+z_2|$ viene dada por la siguiente desigualdad $||z_1|-|z_2||$

 $\leq |z_1 + z_2|$. Esta última y la triangular se pueden combinar y escribir así:

$$||z_1| - |z_2|| \le |z_1 + z_2| \le |z_1| + |z_2|.$$
 (3.7)

(f) Sea R una constante positiva y z_0 un número complejo fijo. Muestre que la ecuación para el círculo de radio R centrado en $-z_0$ se puede escribir así:

$$|z|^2 + 2\operatorname{Re}(z\bar{z}_0) + |z_0|^2 = R^2.$$
 (3.8)

(g) Demuestre la siguiente identidad:

$$|z_1 + iz_2|^2 - |z_1 - iz_2|^2 = \frac{2}{i}(z_1\bar{z}_2 - \bar{z}_1z_2), \tag{3.9}$$

donde z_1 y z_2 son números complejos. (h) Demuestre que para todo entero positivo N se verifica:

$$1 + z + z^{2} + \dots + z^{N-1} = \frac{1 - z^{N}}{1 - z}, \ z \neq 1,$$
(3.10)

y a partir de aquí, demuestre la identidad trigonométrica de Lagrange:

$$1 + \cos(\theta) + \cos(2\theta) + \cdots + \cos(N\theta) = \frac{1}{2} + \frac{\sin\left[\left(N + \frac{1}{2}\right)\theta\right]}{2\sin\left(\frac{\theta}{2}\right)}, \ 0 < \theta < 2\pi.$$
 (3.11)

(i) Demuestre que la fórmula cuadrática usual resuelve la ecuación cuadrática $az^2 + bz + c = 0$ cuando los coeficientes $a \neq 0$, b y c son números complejos. (j) Encuentre el área de un triangulo con vértices en z_1 , z_2 y z_3 . Ayuda: aquí tiene la respuesta:

$$A = \frac{1}{2} \begin{vmatrix} \operatorname{Re}(z_1) & \operatorname{Im}(z_1) & 1 \\ \operatorname{Re}(z_2) & \operatorname{Im}(z_2) & 1 \\ \operatorname{Re}(z_3) & \operatorname{Im}(z_3) & 1 \end{vmatrix} | .$$
 (3.12)

(k) Demuestre que la suma y producto de todas las raices de $a_0z^N+a_1z^{N-1}+\cdots+a_N=0$, donde $a_0\neq 0$, son: $-a_1/a_0$ y $(-1)^Na_N/a_0$, respectivamente. (I) Pruebe la siguiente relación:

$$\sin\left(\frac{\pi}{N}\right)\sin\left(\frac{2\pi}{N}\right)\sin\left(\frac{3\pi}{N}\right)\cdot\dots\cdot\sin\left(\frac{(N-1)\pi}{N}\right) = \frac{N}{2^{N-1}},\tag{3.13}$$

donde $N=2,3,\ldots$ Ayuda: escriba el polinomio $z^N=1$ en términos de sus raices (las cuales satisfacen $z^N-1=0$). Use luego la fórmula (3.10). (m) Pruebe que $r_1\exp(i\theta_1)+r_2\exp(i\theta_2)=r_3\exp(i\theta_3)$, donde:

$$r_3 = \sqrt{r_1^2 + r_2^2 + 2r_1r_2\cos(\theta_1 - \theta_2)}, \ \theta_3 = \tan^{-1}\left(\frac{r_1\sin(\theta_1) + r_2\sin(\theta_2)}{r_1\cos(\theta_1) + r_2\cos(\theta_2)}\right). \tag{3.14}$$

(n) Una función f(z) se llama una isometria si no modifica las distancias, es decir, si:

$$|f(z_1) - f(z_2)| = |z_1 - z_2|, (3.15)$$

para todo par de números complejos z_1 y z_2 . Si f(z) es una isometría y α y β son dos constantes, con $|\alpha|=1$, demuestre que $g(z)=\alpha f(z)+\beta$ también es una isometría. Deducir de lo anterior que la

función:

$$g(z) = \frac{f(z) - f(0)}{f(1) - f(0)},\tag{3.16}$$

es una isometría que verifica g(0)=0 y g(1)=1. (o) Pruebe que si |a|<1 ($a\in\mathbb{R}$), entonces:

$$1 + a\cos(\theta) + a^2\cos(2\theta) + a^3\cos(3\theta) + \dots = \frac{1 - a\cos(\theta)}{1 - 2a\cos(\theta) + a^2}.$$
 (3.17)

$$a\sin(\theta) + a^2\sin(2\theta) + a^3\sin(3\theta) + \dots = \frac{a\sin(\theta)}{1 - 2a\cos(\theta) + a^2}.$$
 (3.18)

Ayuda: deberá demostrar primero el siguiente resultado:

$$1 + z + z^2 + \dots = \frac{1}{1 - z}, \ |z| < 1.$$
 (3.19)

- 4°) Un ejercicio simple pero ¿lo sabe usted hacer?: Encuentre las dos raíces cuadradas z del número complejo (escrito en forma binómica) a+ib. Exprese sus resultados solo en términos de a y b. Nota: no se permite usar ningún resultado que involucre a la forma polar de a+ib.
 - 5°) Otro ejercicio simple: Encuentre el módulo de la función

$$F(z) = \frac{z_1 z + z_2}{\bar{z}_2 z + \bar{z}_1},\tag{5.1}$$

siendo |z|=1 y z_1 y z_2 cualesquiera números complejos (como es usual, la barra sobre una cantidad corresponde a la operación de conjugación compleja).