Fig. 6-8. The field lines and equipo-
tentials for two point charges.
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Fig. 6-9. The field outside a con-
ductor shaped like the equipotential A
of Fig. 6-8.

The water molecule, for example, has a rather strong dipole moment. The
electric fields that result from this moment are responsible for some of the im-
portant properties of water. For many molecules, for example COsg, the dipole
moment vanishes because of the symmetry of the molecule. For them we should
expand still more accurately, obtaining another term in the potential which de-
creases as 1/R?, and which is called a quadrupole potential. We will discuss such
cases later.

6-6 The fields of charged conductors

We have now finished with the examples we wish to cover of situations in
which the charge distributions is known from the start. It has been a problem
without serious complications, involving at most some integrations. We turn
now to an entirely new kind of problem, the determination of the fields near
charged conductors.

Suppose that we have a situation 1n which a total charge Q is placed on an
arbitrary conductor. Now we will not be able to say exactly where the charges
are. They will spread out in some way on the surface. How can we know how
the charges have distributed themselves on the surface? They must distribute
themselves so that the potential of the surface is constant. If the surface were not
an equipotential, there would be an electric field nside the conductor, and the
charges would keep moving until 1t became zero. The general problem of this
kind can be solved in the following way. We guess at a distribution of charge and
calculate the potential. If the potential turns out to be constant everywhere on
the surface, the problem is finished. If the surface 1s not an equipotential, we
have guessed the wrong distribution of charges, and should guess again—hopefully
with an improved guess! This can go on forever, unless we are judicious about
the successive guesses.

The question of how to guess at the distribution 1s mathematically difficult.
Nature, of course, has time to do 1t; the charges push and pull until they all balance
themselves. When we try to solve the problem, however, 1t takes us so long to
make each trial that that method is very tedious With an arbitrary group of
conductors and charges the problem can be very complicated, and in general 1t
cannot be solved without rather elaborate numerical methods. Such numerical
computations, these days, are set up on a computing machine that will do the
work for us, once we have told it how to proceed.

On the other hand, there are a lot of little practical cases where it would
be nice to be able to find the answer by some more direct method—without having
to write a program for a computer. Fortunately, there are a number of cases where
the answer can be obtained by squeezing it out of Nature by some trick or other.
The first trick we will describe involves making use of solutions we have already
obtained for situations in which charges have specified locations.

6-7 The method of images

We have solved, for example, the field of two point charges. Figure 6~8
shows some of the field lines and equipotential surfaces we obtained by the com-
putations in Chapter 5. Now consider the equipotential surface marked 4. Sup-
pose we were to shape a thin sheet of metal so that it just fits this surface. If we
place it right at the surface and adjust its potential to the proper value, no one
would ever know it was there, because nothing would be changed.

But notice! We have really solved a new problem. We have a situation in
which the surface of a curved conductor with a given potential is placed near a
point charge. If the metal sheet we placed at the equipotential surface eventually
closes on itself (or, in practice, if it goes far enough) we have the kind of situation
considered in Section 5-10, in which our space is divided into two regions, one
inside and one outside a closed conducting shell. We found there that the fields in
the two regions are quite independent of each other. So we would have the same
fields outside our curved conductor no matter what 1s inside. We can even fill up
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the whole inside with conducting material. We have found, therefore, the fields
for the arrangement of Fig. 6-9. In the space outside the conductor the field is
Jjust like that of two point charges, as in Fig. 6-8. Inside the conductor, it is zero
Also—as it must be—the electric field just outside the conductor is normal to
the surface.

Thus we can compute the fields in Fig. 6-9 by computing the field due to g
and to an 1imaginary point charge —q at a suitable point. The point charge we
“imagine” existing behind the conducting surface is called an image charge.

In books you can find long lists of solutions for hyperbolic-shaped conductors
and other complicated looking things, and you wonder how anyone ever solved
these terrible shapes. They were solved backwards! Someone solved a simple
problem with given charges. He then saw that some equipotential surface showed
up in a new shape, and he wrote a paper in which he pointed out that the field
outside that particular shape can be described in a certain way.

6-8 A point charge near a conducting plane

As the simplest application of the use of this method, let’s make use of the
plane equipotential surface B of Fig. 6-8. With 1t, we can solve the problem of a
charge in front of a conducting sheet. We just cross out the left-hand half of the
picture. The field lines for our solution are shown in Fig. 6-10. Notice that the
plane, since 1t was halfway between the two charges, has zero potential. We have
solved the problem of a positive charge next to a grounded conducting sheet.

We have now solved for the total field, but what about the real charges that
are responsible for it? There are, in addition to our positive point charge, some
induced negative charges on the conducting sheet that have been attracted by the
positive charge (from large distances away). Now suppose that for some technical
reason—or out of curiosity—you would like to know how the negative charges
are distributed on the surface. You can find the surface charge density by using
the result we worked out 1n Section 5-6 with Gauss’ theorem. The normal com-
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Fig. 6—~10. The field of a charge near a plane conducting surface, found by the
method of images.
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Fig. 6-11. The point charge g in-
duces charges on a grounded conducting
sphere whose fields are those of an
image charge q’ placed at the point
shown.

ponent of the electric field just outside a conductor is equal to the density of surface
charge o divided by €,. We can obtain the density of charge at any point on the
surface by working backwards from the normal component of the electric field at
the surface. We know that, because we know the field everywhere.

Consider a point on the surface at the distance p from the point directly be-
neath the positive charge (Fig. 6-10). The electric field at this point is normal to
the surface and is directed into 1t. The component normal to the surface of the
field from the positive point charge is

L
dmey (a® + p2)32

To this we must add the electric field produced by the negative image charge. That
just doubles the normal component (and cancels all others), so the charge density
o at any point on the surface is

2
o) = «Ep) = — o m e (629

An interesting check on our work 1s to integrate ¢ over the whole surface. We
find that the total induced charge 1s —g, as 1t should be. '

One further question: Is there a force on the point charge? Yes, because there
1s an attraction from the induced negative surface charge on the plate. Now that
we know what the surface charges are (from Eq. (6.29)), we could compute the
force on our positive point charge by an integral. But we also know that the force
acting on the positive charge is exactly the same as 1t would he with the negative
1mage charge instead of the plate, because the fields in the neighborhood are the
same in both cases. The point charge feels a force toward the plate whose magni-
tude is

1 q°
= dre; Q) (6 30)
We have found the force much more easily than by integrating over all the nega-
tive charges.

6-9 A point charge near a conducting sphere

What other surfaces besides a plane have a simple solution? The next most
simple shape 1s a sphere. Let’s find the fields around a metal sphere which has a
point charge ¢ near it, as shown in Fig. 6-11. Now we must look for a simple
physical situation which gives a sphere for an equipotential surface. If we look
around at problems people have already solved, we find that someone has noticed
that the field of two unequal point charges has an equipotential that is a sphere
Aha' If we choose the location of an image charge—and pick the right amount
of charge—maybe we can make the equipotential surface fit our sphere. Indeed,
it can be done with the following prescription.

Assume that you want the equipotential surface to be a sphere of radius a
with its center at the distance b from the charge ¢. Put an image charge of strength
q' = —q(a/b) on the line from the charge to the center of the sphere, and at a
distance a2/b from the center. The sphere will be at zero potential.

The mathematical reason stems from the fact that a sphere is the locus of all
ponts for which the distances from two points are 1n a constant ratio  Referring
to Fig. 6-11, the potential at P from ¢ and ¢’ is proportional to

’

4.4
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The potential will thus be zero at all points for which
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If we place ¢’ at the distance a2/b from the center, the ratio ro/r; has the constant
value a/b. Then if

_ _9 (6.31)

the sphere 1s an equipotential. Its potenual 1s, in fact, zero.

What happens 1f we are interested 1n a sphere that 1s not at zero potential?
That would be so only 1f its total charge happens accidentally to be g’ Of course 1f 1t
is grounded, the charges induced on it would have to be just that. But what 1f 1t
is insulated, and we have put no charge on 1t”? Or 1f we know that the total charge
Q has been put on 1t? Or just that 1t has a given potential nor equal to zero? All
these questions are easily answered. We can always add a point charge ¢'’ at the
center of the sphere  The sphere still remains an equipotential by superposition:
only the magnitude of the potential will be changed.

If we have, for example, a conducting sphere which 1s mmtially uncharged
and sulated from everything else, and we bring near to it the positive pomnt
charge g, the total charge of the sphere will remain zero. The solution 1s found
by using an 1mage charge ¢’ as before, but, in addition. adding a charge ¢’/ at the
center of the sphere, choosing

¢ = —q =54 (6.32)

The fields everywhere outside the sphere are given by the superposition of the
fields of ¢, ¢, and ¢’’. The problem is solved.

We can see now that there will be a force of attraction between the sphere
and the point charge g. It 1s not zero even though there 1s no charge on the neutral
sphere. Where does the attraction come from? When you bring a positive charge
up to a conducting sphere, the positive charge attracts negative charges to the
side closer to itself and leaves positive charges on the surface of the far side. The
attraction by the negative charges exceeds the repulsion from the positive charges,
there 1s a net attraction. We can find out how large the attraction 1s by computing
the force on ¢ 1n the field produced by ¢’ and ¢”’. The total force is the sum of the
attractive force between ¢ and a charge ¢ = — (a/b)q. at the distance b — (a?/b),
and the repulsive force between ¢ and a charge ¢ = +(a/b)q at the distance b.

Those who were entertained in childhood by the baking powder box which
has on its label a picture of a baking powder box which has on 1ts label a picture
of a baking powder box which has .  may be interested in the following problem.
Two equal spheres, one with a total charge of + Q and the other with a total charge
of — Q, are placed at some distance from each other. What 1s the force between
them? The problem can be solved with an infinite number of images. One first
approximates each sphere by a charge at its center. These charges will have image
charges in the other sphere. The image charges will have images, etc , etc, etc
The solution 1s hke the picture on the box of baking powder—and 1t converges
pretty fast.

6-10 Condensers; parallel plates

We take up now another kind of a problem involving conductors. Consider
two large metal plates which are parallel to each other and separated by a distance
small compared with their width. Let’s suppose that equal and opposite charges
have been put on the plates. The charges on each plate will be attracted by the
charges on the other plate, and the charges will spread out uniformly on the inner
surfaces of the plates. The plates will have surface charge densities +o0 and —a,
respectively, as in Fig. 6-12. From Chapter 5 we know that the field between the
plates 1s /€, and that the field outside the plates 1s zero. The plates will have
different potenuals ¢ and ¢,. For convemence we will call the difference V' 1t
1s often called the “‘voltage™:

¢1 — ¢z = V.
(You will find that sometimes people use V for the potential, but we have chosen
to use ¢.)
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