
Física II-Geofísica, GUIA 7

Campo Magnético

- 1. Una carga $q=-3\,\mu C$ se mueve con velocidad $\overrightarrow{v}=4\times 10^6\,m/s\,\hat{\imath}$. Hallar la fuerza sobre la carga si el campo magnético es: a) $\overrightarrow{B}=2\,mT\,\hat{\jmath}$, b) $\overrightarrow{B}=2\,mT\,\hat{\imath}$, c) $\overrightarrow{B}=(2\hat{\imath}+3\hat{\jmath}+4\hat{k})\,mT$. (R: a) $-24\,mN\,\hat{k}$, b) 0, c) $12(4\hat{\jmath}-3\hat{k})\,mN$)
- 2. Un avión con carga $1,8\times 10^{-5}\,C$ se mueve con velocidad de magnitud $260\,m/s$ formando un ángulo θ con el campo magnético terrestre de magnitud $5\times 10^{-5}\,T$. Si la fuerza magnética resultante sobre el avión tiene magnitud $2,2\times 10^{-7}\,N$, hallar los posibles valores de θ . (R: 70°, 110°)
- 3. En una región existen $\overrightarrow{B} = (7\hat{\imath} + 4\hat{\jmath}) \, mT \, \text{y} \, \overrightarrow{E} = (2\hat{\imath} + 3\hat{k}) \, kN/C$. Hallar la fuerza electromagnética sobre una carga $q = 2 \, nC \, \text{con} \, \overrightarrow{v} = 0, 5 \, Mm/s \, \hat{k}$. (R: $(7\hat{\jmath} + 6\hat{k}) \, \mu N$)
- 4. Un electrón se mueve en una órbita circular de radio $5\,cm$, perpendicular a un campo magnético de magnitud $1,5\,mT$. Hallar: a) el período del movimiento, b) la energía cinética del electrón. $m_e = 9,11 \times 10^{-31}\,kg$, $e = 1,6 \times 10^{-19}\,C$ (R: a) $23,9\,ns$, b) $494\,eV$)
- 5. Un protón (masa m_p , $q_p = e$), un deuterón ($m_d = 2m_p$, $q_d = e$) y una partícula α ($m_\alpha = 4m_p$, $q_\alpha = 2e$), se aceleran a través de la misma diferencia de potencial V y luego entran en una región donde existe un campo \overrightarrow{B} uniforme con velocidad perpendicular a \overrightarrow{B} . Si el radio de la órbita del protón es $R_p = 10 \ cm$, hallar los radios R_d y R_α . (R: $R_d = R_\alpha = 10\sqrt{2} \ cm$)
- 6. En un espectrógrafo de Bainbridge (ver figura) se proyectan dos tipos de iones de igual carga e y masas $m_a > m_b$. En las regiones 1 y 2 existe un campo magnético de magnitud B perpendicular a la trayectoria de los iones como se indica. Los iones pasan sin ser desviados por la región 1 donde existe además un campo eléctrico de magnitud E. Hallar:
 - a) la dirección del campo eléctrico en la región 1,
 - b) la rapidez de los iones en la región 2,
 - c) el tiempo de vuelo de los iones en la región 2,
 - d) la distancia entre las impresiones de los iones sobre la placa.
 - (R: a) $-\hat{\jmath}$, b) E/B, c) $\pi m/eB$, d) $2E(m_a m_b)/eB^2$)

2a

x

- 7. Un cable de alta tensión conduce una corriente de 1500 A en una región donde el campo magnético terrestre tiene magnitud $5 \times 10^{-5} \, T$. Si el cable forma un ángulo de 75° con el campo, hallar la magnitud de la fuerza magnética sobre un trozo de cable de longitud $50 \, m$. (R: 3, 6 N).
- 8. Una bobina rectangular de 100 vueltas tiene un lado de longitud $a=6\,cm$ sobre el eje z y el otro lado de longitud $b=5\,cm$ sobre el eje y. La bobina se encuentra en un campo magnético $\overrightarrow{B}=(0,2\hat{\imath}+0,5\hat{\jmath})\,T$ y por ella circula una corriente $I=10\,A$ en sentido antihorario. Hallar el torque magnético sobre la bobina. (R: $1,5\,N\cdot m\,\hat{k}$)
- 9. Una espira, paralela al plano xy, tiene forma de triángulo rectángulo con cateto vertical 2a y cateto horizontal a. La espira se encuentra en un campo magnético uniforme $\overrightarrow{B} = B\,\hat{\imath}$, es libre de girar alrededor de su lado vertical, y por ella circula una corriente I en sentido antihorario. Hallar: a) la fuerza magnética sobre cada lado de la espira,
 - b) la fuerza magnética total sobre la espira,
 - c) el momento magnético de la espira, d) el torque magnético sobre la espira. (R: a) $2IaB\,\hat{k}$, $-2IaB\,\hat{k}$, 0, b) 0, c) $Ia^2\,\hat{k}$, d) $IBa^2\,\hat{\jmath}$)