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PREFACE

The reawakening of interest in the subject of Riemann surfaces has
brought with it the need for a textbook in English offering an introduction
to the field. This book presents a self-contained, modern treatment of the
fundamental concepts and basic theorems concerning Riemann surfaces.
We assume that the reader is familiar with elementary complex function
theory and with some real variables and algebra. Because we shall have to
draw heavily from topology and Hilbert space theory, the reader will also
find in this book an introduction to these fields, so that no previous knowl-
edge of these subjects is required. This book is not meant to be a survey of
the current work being done in the realm of Riemann surfaces, but rather
is & modern presentation of the classical theory which will prepare the
reader for further study in this and related fields.

Anyone writing a book on Riemann surface theory would certainly be
influenced by the magnificient work of Professor Hermann Weyl in his
Idee der Riemannschen Fliche, which laid the foundations for the theory of
abstract Riemann surfaces. I am particularly indebted to this work, for it
was there that I had my own introduction to the subject. I have also been
very strongly influenced by the lectures on Riemann surfaces delivered by
Professor Lars V. Ahlfors at Harvard University in 1948.

The original idea of writing this book came from Dr. L. Geller, who
helped lay out the general plan and collaborated in writing Chapters 6 and
7. I am deeply indebted to him both for his help and for his enthusiasm. I
wish to express my gratitude to Professor Maxwell Rosenlicht, who con-
tributed numerous suggestions for making the proofs of many theorems
more elegant, especially in the chapters on combinatorial topology and
abelian integrals. My sincere thanks also go to the many other people who
read the manuscript and offered constructive suggestions for improving it.

To find time to write such a book is always a difficult problem, and T am
grateful for the C. L. E. Moore Instructorship at the Massachusetts Insti-
tute of Technology from 1949 to 1951 and to the Summer scholarship at
Northwestern University in 1952 which gave me the opportunity to devote
myself to this task. I also received many valuable suggestions from the
1956 Summer Seminar Group sponsored by the National Science Founda-
tion at the University of Kansas. I wish to thank Miss Vera Fisher for
the excellent job of typing the manuscript, and Addison-Wesley Publish-
ing Company for their friendly cooperation in the publication of the final
work.

January 1957 G. 8.
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CHAPTER 1
INTRODUCTION

1-1 Algebraic functions and Riemann surfaces. A student in the theory
of functions of a complex variable usually first encounters the notion of a
Riemann surface in connection with the multiple-valued behavior of the
function w = 4/2. In this book, we shall first regard a Riemann surface
from a more abstract point of view. The aims of this introduction are to
lead the reader over the bridge from the notion of several sheets covering
the z-plane to the abstract definition, and to point out the goals of our study
of Riemann surfaces and the routes we follow to attain these goals. The
definitions made in the introduction will necessarily be vague and the
arguments heuristic, but these will be set on a firm foundation in the later
chapters.

An important part of the theory of functions of a complex variable is
devoted to the study of algebraic functions and their integrals. An analytic
function w = w(z) is called an algebraic function if it satisfies a functional
cquation

ao(@w"” +a1(@w" - - L a,(e) =0, ao(z) #0,

in which the a;(2) are polynomials in 2 with complex numbers as coefficients.
IFrom this algebraic equation in w, we note that each value of z determines
several values of w, so that w is a multiple-valued function of 2. How the
different values vary to form the continuous branches of w(z) is one object
of our investigation.

Moreover, a rational function of z and w is of the form

_ bo@uw" + hi@w" T - 4 b (2)
Rz w) = c(:)(z)wk + ci(z)w"‘1 +- -+ ex(?)

where the b;(2) and c;(2) are polynomials in z with constant complex
coefficients, and the denominator is not identically zero. We shall be
iterested in studying the function F(z) defined by selecting one branch of
an algebraic function w(z) at 2o, a path from zq to 2, and setting

F(z) =/ R(z, w(2)) dz,

0
1



2 INTRODUCTION [cHAP, 1

where the value of w(z) is determined by analytic continuation along the
path of integration from the fixed branch at z;. In general, F(2) is also a
multiple-valued function of z. We shall find a system of canonical forms
for these integrals so that any integral of this type can be transformed into
a canonical form by a suitable change of variables. Then we shall study
the canonical forms to learn more about the nature of these integrals.

Starting from a single function element of an algebraic function w(z), we
could use analytic continuation to piece together the whole function and
in this way study its multiple-valuedness. In this book, however, we shall
use Riemann’s approach, in which one looks for a new surface (instead of
the z-plane) on which to consider the algebraic function defined, and on
which it is an ordinary single-valued function. It is this surface that we
call a Riemann surface.

The simplest algebraic functions are those defined by an equation of the
form ag(2)w + a;(2) = 0, where ay and a; are polynomials in z. In this
case, w = —ay(2)/ae(2) is a single-valued rational function of z; functions
of this type are characterized by the condition that w be regular in the
extended z-plane (z-sphere) except for a finite number of poles. If the poles
occur at the points by, by, . . ., b,, then w may be expanded in partial
fractions:

where

__CnLk Co,k . Cons ke
e T e % A = AT

is the principal part of w(z) at by and p(2) is the polynomial in z which, to
within a constant term, is the principal part of w(z) at infinity. Any ra-
tional function R(z, w) of z and this rational function w is also a rational
function of z and has a partial-fraction expansion. Each integral

F) 2/ R(z, w) dz

0

can be computed directly, yielding terms of the form Alog (z — b), in
addition to a rational function of z. Thus F(z) is a multiple-valued function
of z which changes value by 277 A when zis continued around a small circle
about any b which is a pole of R(z, w) with nonzero residue A. Moreover,
the change in value of F(2) around any simple closed path is, by the residue
theorem, 277 times the sum of the residues of R(z, w) at points interior to
this path, so that the terms A log (z — b) account completely for the
multiple-valuedness of F(z). Thus we have some of the important prop-
erties of an algebraic function defined by a equation of degree 1 in w.
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The next algebraic functions we shall consider are those defined by equa-
tions of degree 2 in w; that is, agw? + a,w + az = 0, where the a; = a;(z)
are polynomials in 2, and ag # 0. If we make the simple change of variable
¢ = 2aow + a), we obtain

3'2—10(2) =0,

where p(z) = a2 — 4agas is a polynomial in z. For any fixed 2, { is a
single-valued function of w, and conversely; here, we shall study {(z2)
instead of w(z). We shall do this by starting with p(2) of degree 1 in z and
letting the degree of p increase in going from one case to the next.

The algebraic function defined by w? — z = 0 is not single-valued in
the extended z-plane. For, using polar coordinates z = re”, we have
w=1/7 }®. Starting at some point rge®, ry > 0, and continuing w(z)
along a closed path that winds once around the origin so that 6 increases
by 27, w(z) comes to the value \/rj e ®+2” = — /5 ™, which is
just the negative of its original value. Continuation around this path once
again leads back to the original value of w(z). If we cut the extended
2-plane along the positive real axis and restrict ourselves so as never to
continue w(z) over this cut, we get two single-valued branches of w(z),
namely, w = 1/r e}*?, 0 < 0 < 2r, and w = /7 e?", 2r < 6 < 4x. To
“pbuild” the Riemann surface for w(z), we take two replicas of the z-plane
cut along the positive real axis and call them sheet I and sheet II. The cut
on each sheet has two edges; label the edge of the first quadrant with a 4
and the edge of the fourth quadrant with a —. Then attach the + edge of
the cut on I to the — edge of the cut on II, and attach the — edge of the
cut on I to the 4 edge of the cut on II. Thus, whenever we cross the cut,
we pass from one sheet to the other.

Now the coordinate z determines a point in I and a point in II. It will
be convenient to find a designation which will determine a single point on
the Riemann surface. We associate to the point z on I the fixed value of
A/z given by v/7 ¢, 0 < 6 < 2, and designate this point on I by (2, \/2).
Then, starting from w = /%, if we continue the function w(z) defined by
w? — 2z = 0 around a simple closed path about the origin, we cross the cut
and pass into IT, and when we return to the point in IT having coordinate z,
w has become —+4/z. We designate the point z on II by (2, —4/z), which
distinguishes it from (2, /z) on I. Thus each point of the Riemann surface
may be considered as an ordered pair (z, w), where w? — z = 0, and two
points (21, wy) and (24, ws) are identical on the Riemann surface if and only
if 27 =2z and w,(2) = wa(2) about z=12,. It is also clear that w(z),
satisfying w? — 2 = 0, is single-valued on the surface and assumes the
value w at the point (2, w). In this case, there are two values of w for each
base point z except 2 = 0 and z = oo, which are branch points of w = /2.
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Unfortunately, the two-sheeted surface we just constructed cannot be
realized in our three-dimensional euclidean space as two sheets lying over
the z-plane and attached crosswise along the given cuts, as will be readily
apparent if we try to make it by cutting sheets of paper. It is this fact
that lends an air of mystery to this surface, and which makes us suspicious
and uncomfortable about Riemann surfaces in general. To dispel any
such suspicion, we shall show that the two-sheeted surface can be mapped
topologically onto a sphere.t Againwe shall begin by imagining the surface
as two sheets lying over the extended z-plane, each cut along the positive
real axis. Using stereographic projection, we can consider the two sheets to
be spheres cut along a meridian circle from the south pole to the north
pole (Fig. 1-1) with each + edge attached to the — edge of the other sheet.
Now pretend that the spheres are made of rubber and, by spreading the
edges of the cuts, deform each sheet into a hemisphere, When each sheet

Ficurg 1-1.

Figure 1-2.

A mapping is called topological if it is continuous and one-to-one with a
continuous inverse.
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is rotated so that the openings of the hemispheres face each other (Fig. 1-2),
the edges marked - and — face each other and the two hemispheres may
be pasted together to give us a sphere. This mapping is carried out ana-
lytically if we take each point (2, 4/2) of the Riemann surface into the point
{ = +/z of the extended ¢-plane (¢-sphere).

Now what can we say about the integrals

F(z) = / R(z,V'z) dz,

where R(z, w) is a rational function of z and w? If we consider this integral
on the Riemann surface (2, v/2) and map this surface onto the {-sphere by
{ = 4/z, our integral becomes

vz
F(z) = / ~R(£?, )2t dt,
NER

which is just the integral of a rational function of {. But this was treated in
the first case, in which we saw that the only multiplicity arises from the
residues of 2R(¢% ). Thus, F(z) is a multiple-valued function on the
Riemann surface of w? — z = 0, the multiplicity arising from the log-
arithmic singularities. Finally, in the z-plane itself, F'(z) has the additional
two-valuedness due to the identification of the sheets.

The situation for w? = agz - a; is essentially the same as that for
w? — 2= 0. Here we make the cut in the z-plane from z = —a;/ag to
2z = oo instead of from 0 to oo and proceed as before. Infact, even the case
w? = agz® + az+ ag, a2 — 4agaz # 0, ay # 0, offers nothing essentially
new, for, by factoring, we get w? = ao(z — r)(z — s), r # s. The two points
z=r and 2= s are branch points of this function, and we obtain two
single-valued branches of w = A/ay(2 — r)(2 — s) by cutting the z-plane
along a curve joining 7 to s. Joining two replicas of the extended z-plane
along this cut, we obtain a two-sheeted Riemann surface on which w(z) is
single-valued. It is clear that if the surface were made of rubber, it could
be deformed continuously into that of w? = 2z by moving r into 0 and s
into o0 and deforming the cut into the positive real axis. Thus this new
surface may also be mapped topologically into a sphere. The mapping is
executed analytically by first applying the linear fractional transforma-
tion T = (2 — r)/(z — s), which carries the z-plane in a one-to-one con-
formal manner onto the r-plane with r — 0 and s — . The two-sheeted
Riemann surface over the z-plane maps onto a two-sheeted Riemann
surface over the r-plane, branched at r = 0 and 7= o. Then { =4+/7
unwinds this Riemann surface and maps it onto the {-sphere as before.
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We now consider the integral

/ R(z, Vag? + a1z —l——az) dz

0

of a rational function of z and w, where w? = ag2® + a,2 + a;. Using the
change of variables above, which maps the Riemann surface over the
z-sphere onto the ¢-sphere, we have ¢ = v/(z —r)/(z — s), and

(z=~1)/(2~98)
T8—7r — 8§—7T r—s

/z., R(z, w) dz = (zo—r)/(zo—s)R(—_—T_"l’ @07 1) 17 4

or

Vemnie-a t°s—r s r
F(z)/ R<t2 ,Va t )(t2 1)22tdt

(z —r)/(z 0=

which is the integral of a rational function of ¢ on the ¢-sphere. This integral
is a multiple-valued function of ¢ = /(2 — r)/(z — s) because of the log-
arithmic singularities corresponding to those poles for which the integrand
has nonzero residue. Thus, as before, the multiple-valuedness of F(z) in
the z-plane arises from the logarithmic singularities of F(2) and the two-~
valuedness of the map z — ¢.

The picture changes significantly when we proceed to the case of the
algebraic function defined by w?= a(z — r{)(z — r2)(z2 — r3), where
r1, re, r3 are distinct. Again, to each z there correspond two values of w,
one the negative of the other. We go from one to the other by continuing
w(z) over any closed path winding once around one of the roots r,, 73, r3.
For w = v/avz — r;\/Z2 — r;07/2 — ry, and the factor 4/z —r,; changes
sign when arg (z — r;) changes by 2. If we cut the z-plane from 7, to rg,
we cannot wind around either ry, or 7z alone without crossing the cut.
However, we could choose a path which winds around both r, and r; (see
the dotted path in Fig. 1-3). But now both arg (¢ — r,) and arg (¢ — r3)
change by 2, both the factors /2 — 7, and 4/z — 7, change sign, and
there is no change in w. We next cut the z-plane from r3 to . This pre-
vents us from winding around all three of the roots ry, r3, and r3. Thus
either branch of w(z) is single-valued in the cut plane. If we now take two
copies of the cut z-plane (Fig. 1-3 or 1-4) and connect them crosswise over
the cuts as before, we obtain a two-sheeted Riemann surface on which
w? = a(z — r1)(z — r2) (2 — r3) is single-valued. Again the points on this
surface can be designated by (z, w(2)), where the z determines a point on
both sheets and w(z) says on which sheet the point lies.
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Ficurg 1-3. Figure 1-4.

Ficure 1-5.

Ficure 1-6.
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This two-sheeted Riemann surface cannot be topologically mapped onto
a sphere, but we now show that it can be mapped topologically onto a
torus (doughnut). This can be seen by placing next to each other the two
spheres cut between 7, and r, and between r3 and . KEach + edge of a
cut is to be attached to the — edge of the corresponding cut on the other
sphere (Fig. 1-5). Imagine that the spheres are made of rubber, and stretch
each cut into a circular hole (Fig. 1-6). Then rotate the spheres until the
holes face each other, and pull the edges of the cuts outward to make little
tubes (Fig. 1-7). Notice that now the + edges of the tubes on one sphere
are opposite the — edges of the tubes on the other sphere. Thus we may
join together the ends of the tubes to form the surface in Fig. 1-8, which
can be topologically mapped onto a torus (Fig. 1-9).

It is easy to see that the torus cannot be mapped onto a sphere topo-
logically. For on the sphere, any closed curve can be deformed to a point
and this property is preserved under topological mappings of the surface.
On the torus, however, the meridian circles C; and the latitude circles C,

Ficure 1-7.

Ficure 1-8.
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Ficore 1-9.

Ficoure 1-10.

indicated in Fig. 1-10 cannot be deformed continuously .to a point on the
surface of the torus. The curves marked C; and C5 in Figs. 1-3 and 1-4
correspond to the meridian curves C; and latitude curves C; on the torus,
respectively. In the two-sheeted Riemann surface of Fig. 1-4, the solid
part of C; lies on one sheet and the dashed part on the other.

The existence on the surface of curves which, like C'; and C, cannot be
deformed to a point, affects the multiple-valuedness of the integrals of
algebraic functions. Observe that around either C; or Cg, the function
w = /a(z — r;)(z — r4) (2 — r3) does not change its value.

In the cases studied previously, an integral

F(z) =/Z R(z, w(z)) dz,
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where R is a rational function of 2z and w, had multiple-valuedness in the
z-plane which arose because of the residues of R (logarithmic singularities
of F) or because of the two-valuedness of w(z). We shall soon see that

/ R(z, w(z)) dz

can have a nonzero value around closed paths like C'; and C3 in Figs. 1-3
and 1-4 even though w(z) remains single-valued on the curves and there
are no residues of R enclosed by the curves. These integrals, with

w? = a(z — 1) (2 — 79) (2 — 73),
are called elliptic integrals. The situation is similar when
w? = a(z — 1) (2 — r2) (2 — 73) (2 — 14),

where 7y, rg, 73, r4 are all distinet. In this case, cuts are made between
r; and 75 and between r3 and ry. These again can be opened and joined,
as before, to give us a torus. Here also,

/ R(z, w) dz

0

is called an elliptic integral.

To complete the discussion of the special case w? — p(z) = 0, we take
the function w(z) defined by w? = a(z — r1)(z — 72) . . . (2 — 72), wWhere
the roots 71, 2, . . . , o are distinct. To each 2z correspond two values of w,
so we get a two-sheeted Riemann surface with branch points at 7y,
e, ..., ra. As before, continuation of w along a path enclosing an odd
number of the branch points leads to —w, while a path enclosing an even
number of the branch points leads back to the original value of w. Thus,
if we separate the branch points into pairs, say (r1, rz), (r3, 74), - .., and
make cuts joining r; to rg, 73 t0 74, . . ., we obtain two branches of w(z),
each single-valued in the cut plane. If nis odd, ry, is left over and we make
a cut from 7, to o. This gives us n/2 cuts if n is even and (n 4 1)/2 cuts
if nis odd. If we connect two spheres, each cut between the branch points
of w in pairs, as we did in the case n = 3 or 4, we obtain a surface such as
that illustrated in Fig. 1-11. This surface consists of two spheres joined
by n/2 tubes if n is even or (n 4+ 1)/2 tubes if » is odd.

By momentarily fixing our attention on the two spheres and the one
tube joining the cuts between r; and 75 and closing the remaining cuts, we
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Ficure 1-11,

Ficure 1-12.

obtain a surface which is topologically a sphere. Now we restore the
remaining ¢ tubes on this new sphere; here gis (n/2) — 1 if n is even and
(n+1)/2 — 1if nis odd. Each tube looks like a handle on the sphere;
we get as the final topological model of the Riemann surface a sphere with
¢ handles, as illustrated in Fig. 1-12. The number g is called the genus of
the surface. Thus each algebraic function of the form ag(2)w? + a,(2)w +
az(z) = 0, ag(z) # 0, has a Riemann surface which is topologically equiva~-
lent to a sphere with g handles. It can be shown that the Riemann surface
for any algebraic funection is topologically a sphere with g handles and that
the algebraic function is a single-valued function of the points on this
surface.



