IV Rotating coordinate system
We
now consider a system S,
and a system S’ rotating with angular velocity w
relative to S
(fig 1); Then if we have basis, íçen>
ý
in S,
and í
çei>
ý
in S’. The projections of the basis vectors of
S’ into the basis in S.
i. e: <ençej>,
must satisfy
d/dt<ençej>
= w ´
çej>
...(6)
Similarly
to seccion III, we define êr>,
êR>
and êr’>.
And:
êr>
= êR>
+ êr’>
The
derivative of this equation using the basis íçen>
ý
is written:
êen>
d/dt <ençr>
= êen>
d/dt <enêR>
+ êen>
d/dt <enêr’>
or
alternatively by means of the unity operator êei>
<ei
ê:
êen>
<ençv>
= êen>
<enêU>
+ êen>
d/dt <enêei><ei
êr’>
In
this case d/dt<enêei>
is not zero but is given by (6), then:
êen>
<ençv>
= êen>
<enêU>
+ êen><ençw ´êei><ei
êr’>
+ êen>
<enêei>d/dt<ei
êr’>
d/dt<ei
êr’>
= <ei
êv’>
are the coordinates of the velocity of the particule relative to O’ expressed
in the í
çei>
ý
basis, forgetting unity operators, we get the equation in abstract form.
êv>
= êU>
+ w´ êr’>
+ çv’>
...(9)
These
abstract vectors have the following physical meaning: êU>
is the velocity of the origin O’ relative to O, w´ êr’>
Is the velocity of the point P fixed in S’ relative to the point P fixed in S;
and çv’>
is the velocity of the particule relative to the point P fixed in S’.
Upon
differentation of eq. (9) and using the identities: d/dt <ençv>
= <ença>; d/dt <ençU>
= <ençA>;
d/dt <enêw´çem>
= <enêw¢´çem>
, w¢ = d/dt w. We obtain:
êen>
d/dt <ençv>
= êen>
d/dt <ençU>
+ êen>
d/dt <en êw´ êr’>
+ êen>
d/dt <enêv’>
In
order to express the temporal derivatives in term of the defined identities we
conveniently multiply by the unity operator, çen><enç=
I = çej><ejç.
êen>
<ença>
= êen>
<ençA>
+ êen>
d/dt <enêw´çem><emçej><ej
êr’> + çen>
d/dt <enêej><ejêv’>
ça>
= çA>
+ êen><en êw¢´çem><emçej><ej
êr’>
+ êen><en êw´çem><emçw ´
çej><ej
êr’> +
+ çen><enêw´çej><ejêv’>
+ çen>
<ençw´êej><ejêv’>
+çen>
<enêej><ejêa’>
Forgetting
unity operators
êa>
= êA>
+ w¢ ´
êr’>
+ w ´w ´
êr’>
+ 2 w ´
êv’>
+ ça’>
êa>
is the acceleration of the particule relative to the origin O, êA> is the acceleration of the origin O’ relative to O; w¢ ´
êr’> is the acceleration of the point P relative to O’ due to
the acceleration of the angular velocity of the coordinates axes. w ´w ´êr’>
is the centripetal acceleration of the point P relative to O’. 2 w ´
êv’>
is the acceleration of the particule relative to the point P fixed in S’ and
is called Coriolis acceleration.