IV Rotating coordinate system

 

            We now consider a system S, and a system S’ rotating with angular velocity w relative to S (fig 1); Then if we have basis, íçen> ý in S, and í çei> ý in S’. The projections of the basis vectors of  S’ into the basis in S.  i. e: <ençej>, must satisfy

 

                                         d/dt<ençej> = w ´ çej>                        ...(6)                                                     

 

Similarly to seccion III, we define êr>, êR> and êr’>. And:

 

                                          êr> = êR> + êr’>                                                                

 

            The derivative of this equation  using the basis íçen> ý is written:

 

                                êen> d/dt <ençr> = êen> d/dt <enêR> + êen> d/dt <enêr’>

 

or alternatively by means of the unity operator êei> <ei ê:

           

               êen> <ençv> = êen> <enêU> + êen> d/dt <enêei><ei êr’>

 

In this case d/dt<enêei> is not zero but is given by (6), then:

 

               êen> <ençv> = êen> <enêU> + êen><ençw ´êei><ei êr’> + êen> <enêei>d/dt<ei êr’>

 

d/dt<ei êr’> = <ei êv’> are the coordinates of the velocity of the particule relative to O’ expressed in the í çei> ý basis, forgetting unity operators, we get the equation in abstract form.

 

                                 êv> =  êU> + êr’> + çv’>                                                   ...(9)

 

These abstract vectors have the following physical meaning: êU> is the velocity of the origin O’ relative to O, w´ êr’> Is the velocity of the point P fixed in S’ relative to the point P fixed in S; and  çv’> is the velocity of the particule relative to the point P fixed in S’.

            Upon differentation of eq. (9) and using the identities: d/dt <ençv> = <ença>;          d/dt <ençU> =  <ençA>; d/dt <enêw´çem> =  <enêw¢´çem> , = d/dt w. We obtain:

 

êen> d/dt <ençv> = êen> d/dt <ençU> + êen> d/dt <en ê êr’> + êen> d/dt <enêv’>

 

In order to express the temporal derivatives in term of the defined identities we conveniently multiply by the unity operator, çen><enç= I  = çej><ejç.

 

êen> <ença> = êen> <ençA> + êen> d/dt <enêw´çem><emçej><ej êr’>  + çen> d/dt <enêej><ejêv’>

 

ça> = çA> +  êen><en êw¢´çem><emçej><ej êr’> + êen><en êçem><emçw ´ çej><ej êr’>  +                                                                                                                       + çen><enêw´çej><ejêv’> + çen> <ençw´êej><ejêv’> +çen> <enêej><ejêa’>

 

Forgetting unity operators

 

                               êa> = êA> +  w¢ ´ êr’> + w ´w ´ êr’>  + 2 w ´ êv’> +  ça’>

 

êa> is the acceleration of the particule relative to the origin O, êA>  is the acceleration of the origin O’ relative to O; ´ êr’>  is the acceleration of the point P relative to O’ due to the acceleration of the angular velocity of the coordinates axes. w ´w ´êr’> is the centripetal acceleration of the point P relative to O’. 2 w ´ êv’> is the acceleration of the particule relative to the point P fixed in S’ and is called Coriolis acceleration.

Ir a index       Ir al principio del documento.