NEURAL POLYHEDRA
(Beta version 1.0)

Daniel Crespin
Facultad de Ciencias
Universidad Central de Venezuela

Abstract

This paper presents a method to construct a three layer perceptron
neural network equal to the product of the characteristic functions of
given polyhedra. The method is extended to generalized polyhedra
defined by polynomial and other inequalities.

1.- Introduction. A set is neural if its characteristic function is given by a
neural network. It is known that the characteristic map of a polyhedron can
be realized as a three layer linear perceptron neural network, see [7], which
can be paraphrased as “all polyhedra are neural”. The present paper presents
a detailed version and generalizations of this result. It will be applied in [5]
to prove the existence of efficient methods to decide the architecture and
initial weights for perceptrons that perform a given pattern recognition task.

Recall that linear half-spaces are defined by linear inequalities, their finite
intersections are linear (convex) cells and finite unions of linear cells are
linear polyhedra. A formalism of indices will be developed to describe these
intersections and unions in an algorithmically convenient way. Then, given
a polyhedron index, a three layer linear perceptron neural network equal to
the characteristic map of the polyhedron will be explicitly constructed. This
is Theorem 2 below.

(Cells and polyhedra are members of the algebra of subsets of euclidean space
generated by half-spaces and, conversely, any member of this algebra is a
polyhedron. In the more general Theorem 1, euclidean space is generalized
to an arbitrary set X, half-spaces to arbitrary subsets of X, cells to finite
intersections of these subsets and polyhedra to finite unions of these cells. It

Crespin: Neural Polyhedra 2

then follows that “generalized polyhedra are neural”. In particular, it is pos-
sible to consider subsets of euclidean space defined by polynomial inequalities,
their intersections, and unions of these intersections; these are the algebraic
half-spaces, algebraic cells and algebraic polyhedra respectively. Similarly for
analytic, C! or continuous inequalities. In all cases these generalized polyhe-
dra can be explicitly realized with three layer generalized perceptron neural
networks, as stated in Theorem 3.

Many pattern recognition problems reduce to the construction of a neural
network that performs certain recognition task. As already mentioned, an
application of the results presented here is the formulation of efficient algo-
rithms to determine, directly and without training, a convenient architecture
and weights for a neural network to perform the desired task.

The theorems below have converses, resumed in “perceptron neural networks
are polyhedral”, and can be found in [3]. It follows that the most general
task to be expected from a perceptron is the determination of polyhedra.
Therefore the direct construction of the neural network along the lines pro-
posed here is a reasonable general alternative to training, and in particular
to training by backpropagation.

2.- Preliminaries. The following terminology and notation will be used in
this paper. Map and function are synonymous, and C' means continuously
differentiable. A characteristic indicator, or simply indicator is a product of
characteristic functions. Linear forms are in general non-homogeneous and
non-constant f : R™ — R, f(z1,...,2m) = wo + w11 + -+ + W2y, The
coefficients w; are in some cases specific real numbers and in other cases will
be considered as literal parameters. The linear form f defines half-spaces
H = H(f) € R™. These can be open half-spaces H = H> = {z|f(z) >
0}, H = H< = {z|f(z) < 0} or closed ones H = HZ = {z|f(z) > 0},
H = HS = {z|f(z) < 0}. The complement of an open half-space is a
closed one and viceversa. A Heaviside function h can be either the open
Heaviside function h : R — {0,1} C R, h() =1fort > 0 and h() =10
for t+ < 0; or the closed Heaviside function h : R — {0,1} C R, h(t) = 1
for ¢ > 0 and A(t) = 0 for t < 0. The characteristic map of a half-space
H = H(f)is Xg = he f with h = h if the half-space is open and h = &

if it is closed. By definition the linear perceptron processing unit p with

Crespin: Neural Polyhedra 3

m inputs @ = (21,...,%,) and parameters (weights) w = (wg, w1, ..., W)
is the map p = p(w,z) : R™! x R™ — {0,1} C R given by p(w,z) =
h(wo 4 wiz1 + - -+ Wy). Hence, p is a parametrization of a family of half-
spaces in R™. Again, the w; can be arbitrary numbers (all the half-spaces),
can be restricted to a subset (some half-spaces) or can take specific real
values (single half-space). Will denote by p, : R™ — {0,1} C R the map
x — p(w, z). Also, the perceptron can be an open perceptron, p = p = ho fs
in which case the parametrized half-spaces are open; or it can be a closed
perceptron, p = p = he f, parametrizing closed half-spaces.

Consider now vectors wy = (W10, Wi, .+, Wim)s -« s W = (Wnoy Wntse - oy Wiyn),
w; € R™Y I py = py(wy,),...,pn = pu(wn,) are perceptrons with m
inputs their parametric product is the map p = py X -+ Xpn : R™t x -+ x
R™ x R™ — {0,1}* C R™ defined by p(wy,...,w,,z) = (pi(wy,x),...,
Pr(Wn,). Equivalently, pw, .. w,) = Pw, X =+ X pw,. By definition, a linear
perceptron layer with m inputs and n units is this parametric product. It
is a parametrized family of ordered n-tuples of linear half-spaces in R™. If
specific numerical values are given to the weights then the parametric product
is the usual cartesian product.

Let p: RU#t)n 5 R™ — R™, p' : R4 x R* — R be perceptron layers.
Their parametric composition is the map p/=p : R#t)7 « R(*+a « R™ —
R? given by (p'°p)(w,w',z) = p'(w',p(w,z)). Equivalently, (p'°p)w,w) =
Pl pw. Similarly for more layers, p(s ... ?pgz) = pgr) SR pfjl). By
definition, the parametric composition of r linear p7erceptron layers is a lin-
ear perceptron neural network. If the weights are specific numbers then the
perceptrons reduce to single maps of their inputs and the parametric compo-
sition becomes the usual composition of functions. For more details on this
neural formalism see [1]. The contents of the present paper, formulated over
the real number system R, is in general valid over the field Q of rational
numbers.

3.- Cells. Consider the n-dimensional logical cube {0,1}" = {0, 1}{t-n} C
R" and the power set P, = P({l,...,n}) = {I|I C{l,...,n}}. For each
binary vector b = b € {0,1}" denote by I(b) the supportof b, I(b) = {i|b; #
0}. And for each I € P, let by = b(ln) € {0,1}" be the characteristic map of

Crespin: Neural Polyhedra 4

I so that for any b € {0, 1}" one has b = by and for any I € P({1,...,n}),
I = I(by) holds. The correspondence b; < I is one-to-one between {0, 1}"
and P,,. By definition a cell index is a pair ¥ = (I, [;) with I; € {1,...,n},
t=0,1. Let sg = |Io| and s; = |I;|. Will denote Iy and I; also by Iy = Iy(X)
and I} = I;(Y).

Let X be a set with subsets Hy,..., H, having characteristic functions X, ,
..., Xg, and indicator Xg, .., = Xpg, X --- X Xg,. A cell index ¥ determines
a generalized cell which is the subset of X defined as Cx, = (N;¢;, (X — H;)) N
(Nier, Hi). If Ion I, # (it follows trivially that Cx = () so, in what follows
it will be assumed that Io N I; = (). Note that z € Cy & Vi € Iy, Xy, (z) =0
and Vi € I, Xp,(z) = 1.

A cell index ¥ = (Iy, I1) also determines a (non-homogeneous) linear form
fx: R" — R given by fx(z) = (by, — by,)-x — s1(¥) — % The corresponding
linear perceptrons have the form py = hefy : R* — {0,1} € R with
h:R —{0,1} C R a Heaviside function.

Furthermore, a cell index ¥ determines a set By C {0,1}" defined by By =
{b = (by,...b,)|b; = 0 for 1 € Iyand b; = 1 for ¢« € I;}. It then follows
that for b € {0,1}", pu(b) = 1 & b € By. But now, for # € X one has
pr °XH1...HP($) =1 XH1~~~HP(~17) € By & Xl(x) =0 for : € I and X,(”E) =
1 fori € I} & x € Cyx. Therefore the characteristic map of the cell Cy equals
the composition of the indicator Xg, ..y, and the perceptron ps.

4.- Polyhedra. A polyhedron indez is a collection T' = {Xq,...,%,} of cell
indices. With the hypothesis and notation of previous section, if a polyhedron
index T' = {¥y,...,%,} is given it defines linear perceptrons py,,...,px,
and their product pg, X - - - >A<pgq. The index T also determines a generalized
polyhedron which is the subset of X given by Pr = Uger Cx. Denote by g the
linear form g : RY — R given for z = (z1,...,2,) as g(2) = z1 + -+ + 2z, — 3,
and having perceptron p, = heg. Let x € X, y = (Xg,(x),...,Xn,(2)),
z = (ps,(y);--»pz,(y)). Then pyo (pg, X -+ Xps,) e (Xpz, X - - XX,)(z) =
le s+ 42,21 djst.py;(y) =1 Jjst. (Xp,(2),...,Xn,(2)) €
By, & x € User Cx. Hence, the characteristic map of the polyhedron Pr
equals the composition of the indicator Xg, X --- xXg, and the two layer

linear perceptron p, ° (py, X >A<pgq).

Crespin: Neural Polyhedra 5

5.- Collections of polyhedra. Let Ti,...,T, be polyhedron indices and
consider T'=Ty U ---UT,. Assume that T' = {¥;,...,%,} and that subsets
Jiy.o.ooyJy of {1,...,q} are given such that T, = {¥k|k € Ji}. In par-
ticular the corresponding linear perceptrons py, ,...,ps, and the indicator
P, X ;<pgq : R* — RY are specified. Also, for & = 1,...,r the lin-
ear forms fr, : R* — R given by fr,(z1,...,%) = (Zjes,) — 3, and
the linear perceptrons pr, = h° fr, : R? — {0,1} C R can be specified.
These play the role of the ¢ and p, of the previous section. As before,
pr, ° (ps, X -+ >A<pgq) o (Xg, X - xXg,)(x) = 1 & x € Px,, therefore the
characteristic indicator Xp, X --- XxXp, of the polyhedra equals the compo-
sition of the indicator Xg, X - -+ XXp, with the two layer linear perceptron

(pr, % - xpr,)° (px, X -+ >A<pgq). The discussion implies

Theorem 1. The indicator of a finite collection of generalized polyhedra can
be realized as a three layer neural network.

In this theorem the second and third layers are linear perceptrons. Suppose
now that X = R™, and that the H;’s are half-spaces defined by linear per-
ceptrons pi,...,p,. Then the cells are usual convex cells in euclidean space
and the polyhedra are the usual polyhedra. The previous arguments prove:

Theorem 2. The indicator of a finite collection of polyhedra in euclidean
space can be realized as a three layer linear perceptron neural network.

In more detail, given T,..., T, and T = Ty U --- U T, = {¥4,...,%,} as

above, the neural network is the one shown in the figure below.

Crespin: Neural Polyhedra 6

Y41 YO Pr

Neural network for Xr,..1,

A brief description of the network is the following. The first layer has one bias,
m variable inputs and n perceptron units py, ..., p,. The arrows entering the
unit p; have weights equal to the coefficients of the linear form that defines
the half-space H;. The second layer has one bias, n variable inputs and ¢
perceptron units pyx,,...,px,; the weights for the arrows entering py, are,
from top to bottom, the bias weight —s;(%;) — % and the components of the
vector by, (s;) — by,(z;). The third layer has one bias, ¢ variable inputs and r
perceptron units, pr, ..., pr,; the weights on the arrows entering pr, are the

bias weight —% and the ¢ components of the vector by, .

The network can also be described in terms of weight matrices.

FIRST LAYER: Let m=number of components of the initial input vectors,
n=number of perceptrons; these are independent of the indices. The weight
matrix, with n rows and m + 1 columns, has the form

ol))
w =1
wig wp e wll)

SECOND LAYER: Let ¢ be the total number of cell indexes composing the

Crespin: Neural Polyhedra 7

various polyhedra, as indicated in 7' =Ty U --- U T, = {¥4,...,%,}. In the
second layer the weight matrix, with ¢ rows and m + 1 columns, is

—s1(%1) — % by (z) — br(zy)
W = : :
s1(8) =35 bazy —bazy

This matrix depends on the indexes. Recall that b; was defined as the only
binary vector with support .J, hence, all entries outside the first column are
1,0 or —1.

THIRD LAYER: If the total number of polyhedron indices is r, the weight
matrix for the third layer has r rows and ¢ + 1 columns

br

1

1
2
w® = :
br,

r

1
2

with all entries outside the first column equal to 0 or 1.

6.- Examples of generalized polyhedra. Let f = f(zy,...,2,) : R" —
R be a polynomial, » : R — {0,1} € R a Heaviside function, then p =
hef:R™ — {0,1} C R is an (open or closed) algebraic perceptron with
weights the coefficients of f. The degree of p is, by definition, the degree of f.
For example, perceptrons of degree one are the same as linear perceptrons.
Algebraic perceptrons are characteristic functions of parametrized families
of algebraic half-spaces H = H> = {z|p(x) > 0} (h = h open) or of H =
HZ = {z|p(z) > 0} (h = h closed). Suppose that p;,...,p, are algebraic
perceptrons with algebraic half-spaces Hy,..., H, and let ¥ be a cell index,
then the corresponding cell Cy is an algebraic cell (or basic semialgebraic
set). If furthermore T' = {3,,...,%,} is a polyhedron index then Pr =
Cs, U---UCyx, is an algebraic polyhedron. Let us state explicitly

Theorem 3. The indicator of a finite collection of algebraic polyhedra in
euclidean space can be realized as a three layer algebraic perceptron neural
network with second and third layers of degree one.

Analogous concepts and results can be obtained if analytic C! or continuous
maps are used instead of polynomials. In this way one obtains analytic

Crespin: Neural Polyhedra 8

half-spaces, analytic cells, analytic polyhedra, C' half-spaces, C*! cells, C*
polyhedra, and continuous half spaces, cells and polyhedra. Analytic, C*
and continuous indicators are realizable, as in Theorem 3, with a three layer
analytic or C! perceptron network.

7.- Training. Linear perceptrons, and the algebraic, analytic, C! and con-
tinuous perceptrons of the previous section, are not C'' and not even contin-
uous functions of their inputs. Given p = ke f, with f a C! map, to obtain
a C' function replace the discontinuous Heaviside function & by the sigmoid
oc:R — (0,1) CR, a(t) = (1 +e*)~t. The resulting object, o° f will
be called o-perceptron or generalizedoperceptron. These o-perceptrons are
C! functions of their inputs and the o-neural networks that result can be
trained using backpropagation rules. For a generalized formulation of back-
propagation see [2]. As already mentioned, the combined results of [3] and of
sections 3 and 4 above, provide a direct and efficient method to specify the
architecture and weights for a linear or generalized (including continuous)
perceptron neural network that performs a given recognition task. At this
point standard training of the network (in the C*' case) could fine tune the
weights and improve its performance, something not yet explored.

REFERENCES
[1] Crespin, D. Neural Network Formalism. To appear.
[2] Crespin, D. Generalized Backpropagation. To appear.
[3] Crespin, D. Geometry of Perceptrons. To appear.
[4] Crespin, D. Neural Polyhedra (this present paper).
[5] Crespin, D. Pattern recognition with untrained perceptrons.
[6] Crespin, D. Feature Extraction. To appear.
[7]

Daniel Crespin
dcrespin@euler.ciens.ucv.ve
Caracas, November 29, 1995.

