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In July 1925 Heisenberg published a paper that ushered in the new era of quantum mechanics. This
epoch-making paper is generally regarded as being difficult to follow, partly because Heisenberg
provided few clues as to how he arrived at his results. We give details of the calculations of the type
that Heisenberg might have performed. As an example we consider one of the anharmonic oscillator
problems considered by Heisenberg, and use our reconstruction of his approach to solve it up to
second order in perturbation theory. The results are precisely those obtained in standard quantum
mechanics, and we suggest that a discussion of the approach, which is based on the direct
calculation of transition frequencies and amplitudes, could usefully be included in undergraduate
courses on quantum mechanics. ©2004 American Association of Physics Teachers.
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I. INTRODUCTION

Heisenberg’s paper of July 19251 on ‘‘Quantum-
mechanical reinterpretation of kinematic and mechan
relations,’’2,3 was the breakthrough that quickly led to th
first complete formulation of quantum mechanics.4–6 Despite
its undoubtedly crucial historical role, Heisenberg’s approa
in this paper is not generally followed in undergradua
quantum mechanics courses, in contrast, for example, to
stein’s approach in the teaching of relativity. Indeed Heis
berg’s paper is widely regarded as being difficult to und
stand and of mainly historical interest today. For examp
Weinberg7 has written that ‘‘If the reader is mystified at wh
Heisenberg was doing, he or she is not alone. I have t
several times to read the paper that Heisenberg wrote
returning from Heligoland, and, although I think I unde
stand quantum mechanics, I have never understood He
berg’s motivations for the mathematical steps in his pap
Theoretical physicists in their most successful work tend
play one of two roles: they are eithersagesor magicians... It
is usually not difficult to understand the papers of sa
physicists, but the papers of magician-physicists are o
incomprehensible. In this sense, Heisenberg’s 1925 p
was pure magic.’’

There have been many discussions aimed at elucida
the main ideas in Heisenberg’s paper of which Refs. 3
8–18 represent only a partial selection.19 Of course, it may
not be possible to render completely comprehensible
mysterious processes whereby physicists ‘‘jump over all
termediate steps to a new insight about nature.’’20 In our
opinion, however, one of the main barriers to understand
Heisenberg’s paper is a more prosaic one: namely, he g
remarkably few details of the calculations he performed.

In Sec. II we briefly review Heisenberg’s reasoning in s
ting up his new calculational method. Then we present
Sec. III the details of a calculation typical of those we co
jecture that he performed. Our reconstruction is based on
1370 Am. J. Phys.72 ~11!, November 2004 http://aapt.org
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assumption that, having formulated a method that was
pable of determining the relevant physical quantities~the
transition frequencies and amplitudes!, Heisenberg then ap
plied it to various simple mechanical systems, without a
further recourse to the kind of ‘‘inspired guesswork’’ th
characterized the old quantum theory. Surprisingly, this po
of view appears to be novel. For example, MacKinnon10 and
Mehra and Rechenberg11 have suggested that Heisenberg
rived at the crucial recursion relations@see Eqs.~33!–~36! in
Sec. III B# by essentially guessing the appropriate gener
zation of their classical counterparts. We are unaware of
evidence that can settle the issue. In any case, our ana
shows that it is possible to read Heisenberg’s paper as
viding a complete~if limited! calculational method, the re
sults of which are consistent with those of standard quan
mechanics. We also stress both the correctness and the
ticality of what we conjecture to be Heisenberg’s calcu
tional method. We hope that our reappraisal will stimula
instructors to include at least some discussion of it in th
undergraduate courses.

II. HEISENBERG’S TRANSITION AMPLITUDE
APPROACH

A. Quantum kinematics

Heisenberg began his paper with a programmatic call21,22

to ‘‘discard all hope of observing hitherto unobservab
quantities, such as the position and period of the electro
and instead to ‘‘try to establish a theoretical quantum m
chanics, analogous to classical mechanics, but in which o
relations between observable quantities occur.’’ As an
ample of such latter quantities, he immediately pointed to
energiesW(n) of the Bohr stationary states, together wi
the associated Einstein–Bohr frequencies23

v~n,n2a!5
1

\
@W~n!2W~n2a!#, ~1!
1370/ajp © 2004 American Association of Physics Teachers
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and noted that these frequencies, which characterize th
diation emitted in the transitionn→n2a, depend on two
variables. An example of a quantity he wished to exclu
from the new theory is the time-dependent position coo
natex(t). In considering what might replace it, he turned
the probabilities for transitions between stationary states

Consider a simple one-dimensional model of an atom c
sisting of an electron undergoing periodic motion, which
the type of system studied by Heisenberg. For a state c
acterized by the labeln, the fundamental frequencyv(n),
and the coordinatex(n,t), we can representx(n,t) as a Fou-
rier series

x~n,t !5 (
a52`

`

Xa~n!eiav(n)t, ~2!

where a is an integer.24 According to classical theory, th
energy emitted per unit time~the power! in a transition cor-
responding to theath harmonicav(n) is25

2S dE

dt D
a

5
e2

3pe0c3 @av~n!#4uXa~n!u2. ~3!

In the quantum theory, however, the transition frequency c
responding to the classicalav(n) is, in general, not a simple
multiple of a fundamental frequency, but is given by Eq.~1!,
so thatav(n) is replaced byv(n,n2a). Correspondingly,
Heisenberg introduced the quantum analogue ofXa(n), writ-
ten ~in our notation! asX(n,n2a).27 Furthermore, the left-
hand side of Eq.~3! has to be replaced by the product of t
transition probability per unit time,P(n,n2a), and the
emitted energy\v(n,n2a). Thus Eq.~3! becomes

P~n,n2a!5
e2

3pe0\c3 @v~n,n2a!#3uX~n,n2a!u2.

~4!

It is the transition amplitudesX(n,n2a) which Heisenberg
took to be ‘‘observable;’’ like the transition frequencies, th
depend on two discrete variables.28

Equation~4! refers, however, to only one specific trans
tion. For a full description of atomic dynamics~as then con-
ceived!, we need to consider all the quantitiesX(n,n
2a)exp@iv(n,n2a)t#. In the classical case, the term
Xa(n)exp@iav(n)t# may be combined to yieldx(t) via Eq.
~2!. But in the quantum theory, Heisenberg wrote29 that a
‘‘similar combination of the corresponding quantum
theoretical quantities seems to be impossible in a uni
manner and therefore not meaningful, in view of the eq
weight of the variablesn andn2a @that is, in the amplitude
X(n,n2a) and frequencyv(n,n2a)] ... However, one
may readily regard the ensemble of quantitiesX(n,n
2a)exp@iv(n,n2a)t# as a representation of the quanti
x(t)... . ’’ This way of representingx(t), that is, as we would
now say, by a matrix, is the first of Heisenberg’s ‘‘magic
jumps,’’ and surely a very large one. Representingx(t) in
this way seems to be the sense in which Heisenberg con
ered that he was offering a ‘‘reinterpretation of kinema
relations.’’

Heisenberg immediately posed the question: how is
quantityx(t)2 to be represented? In classical theory, the
swer is straightforward. From Eq.~2! we obtain
1371 Am. J. Phys., Vol. 72, No. 11, November 2004
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@x~ t !#25(
a

(
a8

Xa~n!Xa8~n!ei (a1a8)v(n)t. ~5!

We setb5a1a8, and rewrite Eq.~5! as

@x~ t !#25(
b

Yb~n!eibv(n)t, ~6!

where

Yb~n!5(
a

Xa~n!Xb2a~n!. ~7!

Thus @x(t)#2 is represented classically~via a Fourier series!
by the set of quantitiesYb(n)exp@ibv(n)t#, the frequency
bv(n) being the simple combination@av(n)1(b
2a)v(n)#. In quantum theory, the corresponding repres
tative quantities must be written asY(n,n2b)exp@iv(n,n
2b)t#, and the question is what is the analogue of Eq.~7!?

The crucial difference in the quantum case is that the
quencies do not combine in the same way as the class
harmonics, but rather in accordance with the Ritz combi
tion principle:

v~n,n2a!1v~n2a,n2b!5v~n,n2b!, ~8!

which is consistent with Eq.~1!. Thus in order to end up with
the particular frequencyv(n,n2b), it seems ‘‘almost nec-
essary’’ ~in Heisenberg’s words30! to combine the quantum
amplitudes in such a way as to ensure the frequency com
nation Eq.~8!, that is, as

Y~n,n2b!eiv(n,n2b)t5(
a

X~n,n2a!eiv(n,n2a)t

3X~n2a,n2b!eiv(n2a,n2b)t,

~9!

or

Y~n,n2b!5(
a

X~n,n2a!X~n2a,n2b!, ~10!

which is Heisenberg’s rule for multiplying transition ampl
tudes. Note particularly that the replacementsXa(n)
→X(n,n2a), and similarly forYb(n) andXb2a(n) in Eq.
~7!, produce a quite different result.

Heisenberg indicated the simple extension of the r
given in Eq. ~10! to higher powers@x(t)#n, but noticed at
once31 that a ‘‘significant difficulty arises, however, if we
consider two quantitiesx(t),y(t) and ask after their produc
x(t)y(t)... Whereas in classical theoryx(t)y(t) is always
equal toy(t)x(t), this is not necessarily the case in quantu
theory.’’ Heisenberg used the word ‘‘difficulty’’ three time
in referring to this unexpected consequence of his multi
cation rule, but it very quickly became clear that the no
commutativity~in general! of kinematical quantities in quan
tum theory was the essential new idea in the paper.

Born recognized Eq.~10! as matrix multiplication~some-
thing unknown to Heisenberg in July 1925!, and he and Jor-
dan rapidly produced the first paper4 to state the fundamenta
commutation relation~in modern notation!

x̂p̂2 p̂x̂5 i\. ~11!

Dirac’s paper followed soon after,5 and then the paper o
Born, Heisenberg, and Jordan.6
1371Aitchison, MacManus, and Snyder
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The economy and force of Heisenberg’s argument
reaching Eq.~10! is remarkable, and it is at least worth co
sidering whether presenting it to undergraduates might h
them to understand the ‘‘almost necessity’’ of no
commuting quantities in quantum theory.

B. Quantum dynamics

Having identified the transition amplitudesX(n,n2a)
and frequenciesv(n,n2a) as the observables of interest
the new theory, Heisenberg then turned his attention to h
they could be determined from the dynamics of the syst
In the old quantum theory, this determination would ha
been done in two stages: by integration of the equation
motion

ẍ1 f ~x!50, ~12!

and by determining the constants of the periodic mot
through the ‘‘quantum condition’’

R pdq5 R mẋ2dt5J~5nh!, ~13!

where the integral is evaluated over one period. In regar
Eq. ~12!, Heisenberg wrote32 that it is ‘‘very natural’’ to take
the classical equation of motion over to quantum theory
replacing the classical quantitiesx(t) and f (x) by their ki-
nematical reinterpretations,33 as in Sec. II A~or, as we would
say today, by taking matrix elements of the correspond
operator equation of motion!. He noted that in the classica
case a solution can be obtained by expressingx(t) as a Fou-
rier series, substitution of which into the equation of moti
leads~in special cases! to a set of recursion relations for th
Fourier coefficients. In the quantum theory, Heisenb
wrote that32 ‘‘we are at present forced to adopt this meth
of solving equation Eq.~12! @his Eq. ~H11!# ... since it was
not possible to define a quantum-theoretical function an
gous to the@classical# function x(n,t). ’’ In Sec. III we shall
consider the simple example~the first of those chosen b
Heisenberg! f (x)5v0

2x1lx2, and obtain the appropriate re
cursion relations in the classical and the quantum cases

A quantum-theoretical reinterpretation of Eq.~13! is simi-
larly required in terms of the transition amplitudesX(n,n
2a). In the classical case, the substitution of Eq.~2! into
Eq. ~13! gives

R mẋ2dt52pm (
a52`

`

uXa~n!u2a2v~n!5nh, ~14!

using Xa(n)5@X2a(n)#* . Heisenberg argued that Eq.~14!
appeared arbitrary in the sense of the correspondence
ciple, because the latter determinedJ only up to an additive
constant~times h). He therefore replaced Eq.~14! by the
derivative form@Eq. ~H15!#

h52pm (
a52`

`

a
d

dn
~auXa~n!u2v~n!!. ~15!

The summation can alternatively be written as over posi
values of a, replacing 2pm by 4pm. In another crucial
jump, Heisenberg then replaced the differential in Eq.~15!
by a difference, giving
1372 Am. J. Phys., Vol. 72, No. 11, November 2004
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h54pm(
a50

`

@ uX~n1a,n!u2v~n1a,n!2uX~n,n

2a!u2v~n,n2a!#, ~16!

which is Eq.~H16! in our notation.34 As he later recalled, he
had noticed that ‘‘if I wrote down this@presumably Eq.~15!#
and tried to translate it according to the scheme of dispers
theory, I got the Thomas-Kuhn sum rule@Eq. ~16!35,36#. And
that is the point. Then I thought, That is apparently how it
done.’’37

By ‘‘the scheme of dispersion theory,’’ Heisenberg r
ferred to what Jammer38 calls Born’s correspondence rule
namely39

a
]F~n!

]n
↔F~n!2F~n2a!, ~17!

or rather to its iteration to the form40

a
]F~n,a!

]n
↔F~n1a,n!2F~n,n2a!, ~18!

as used in the Kramers–Heisenberg theory of dispersion.41,42

It took Born only a few days to show that Heisenberg’s qua
tum condition, Eq.~16!, was the diagonal matrix element o
Eq. ~11!, and to guess43 that the off-diagonal elements o
x̂p̂2 p̂x̂ were zero, a result that was shown to be compati
with the equations of motion by Born and Jordan.4

At this point it is appropriate to emphasize that Heise
berg’s transition amplitudeX(n,n2a) is the same as the
quantum-mechanical matrix element^n2aux̂un&, whereun&
is the eigenstate with energyW(n). The relation of Eq.~16!
to the fundamental commutator Eq.~11! is discussed briefly
in Appendix A.

Heisenberg noted44 that the undetermined constant st
contained in the quantitiesX of Eq. ~16! @assuming the fre-
quencies known from Eq.~12!# would be determined by the
condition that a ground state should exist, from which
radiation is emitted@see Eqs.~51! and~52! below#. He there-
fore summarized the state of affairs thus far by t
statement44 that Eqs.~12! and ~16! ‘‘if soluble, contain a
complete determination not only of frequencies and ene
values, but also of quantum-theoretical transition probab
ties.’’ We draw attention to the strong claim here: that he h
arrived at a new calculational method, which will complete
determine the observable quantities. Let us now see in d
how this method works, for a harmonic oscillator perturb
by an anharmonic force of the formlx2 per unit mass.45

III. HEISENBERG’S CALCULATIONAL METHOD
AND ITS APPLICATION TO THE ANHARMONIC
OSCILLATOR

A. Recursion relations in the quantum case

The classical equation of motion is

ẍ1v0
2x1lx250. ~19!

We depart from the order of Heisenberg’s presentation
begin by showing how—as he stated—Eq.~19! leads to re-
cursion relations for the transition amplitudesX(n,n2a).
The (n,n2a) representative46 of the first two terms in Eq.
~19! is straightforward, being

@2v2~n,n2a!1v0
2#X~n,n2a!eiv(n,n2a)t, ~20!
1372Aitchison, MacManus, and Snyder
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while that of the third term is, by Eq.~10!,

l(
b

X~n,n2b!X~n2b,n2a!eiv(n,n2a)t. ~21!

The (n,n2a) representative of Eq.~19! therefore yields47

@v0
22v2~n,n2a!#X~n,n2a!1l(

b
X~n,n2b!

3X~n2b,n2a!50, ~22!

which generates a recursion relation for each value ofa (a
50,61,62,...). Forexample, fora50 we obtain

v0
2X~n,n!1l@X~n,n!X~n,n!1X~n,n21!X~n21,n!

1X~n,n11!X~n11,n!1¯] 50. ~23!

No general solution for this infinite set of nonlinear algebr
equations seems to be possible, so, following Heisenberg
turn to a perturbative approach.

B. Perturbation theory

To make the presentation self-contained, we need to
cuss several ancillary results. Heisenberg began by cons
ing the perturbative solution of the classical equation~12!.
He wrote the solution in the form

x~ t !5la01a1 cosvt1la2 cos 2vt1l2a3 cos 3vt

1¯1la21aa cosavt1¯ , ~24!

where the coefficientsaa , and v, are to be expanded as
power series inl, the first terms of which are independent
l:48

a05a0
(0)1la0

(1)1l2a0
(2)1¯ , ~25a!

a15a1
(0)1la1

(1)1l2a1
(2)1¯ , ~25b!

and

v5v01lv (1)1l2v (2)1¯ . ~26!

We substitute Eq.~24! into Eq. ~12!, use standard trigono
metric identities, and equate to zero the terms that are c
stant and which multiply cosvt, cos 2vt, etc., to obtain

l$v0
2a01 1

2 a1
21@l2~a0

21 1
2 a2

2!1¯#%50, ~27a!

~2v21v0
2!a11@l2~a1a212a0a1!1¯#50, ~27b!

l$~24v21v0
2!a21 1

2 a1
21@l2~a1a312a0a2!1¯#%

50, ~27c!

l2$~29v21v0
2!a31a1a21@l2~a1a412a0a3!1¯#%

50, ~27d!

where the dots stand for higher powers ofl. If we drop the
terms of orderl2 ~and higher powers!, and cancel overal
factors ofl, Eq. ~27! becomes~for lÞ0 anda1Þ0)

v0
2a01 1

2 a1
250, ~28a!

~2v21v0
2!50, ~28b!
1373 Am. J. Phys., Vol. 72, No. 11, November 2004
e

s-
er-

n-

~24v21v0
2!a21 1

2 a1
250, ~28c!

~29v21v0
2!a31a1a250, ~28d!

which is the same as Eq.~H18!.49 The lowest order inl
solution is obtained from Eq.~28! by settingv5v0 , and
replacing eachaa by the corresponding one with a supe
script (0) @see Eq.~25!#.

In the quantum case, Heisenberg proposed to seek a s
tion analogous to Eq.~24!. Of course, it is now a matter o
using the representation ofx(t) in terms of the quantities
X(n,n2a)exp@iv(n,n2a)t#. But it seems reasonable to a
sume that, as the indexa increases from zero in intege
steps, each successive amplitude will~to leading order inl!
be suppressed by an additional power ofl, as in the classica
case. Thus Heisenberg suggested that, in the quantum
x(t) should be represented by terms of the form

la~n,n!, a~n,n21!cosv~n,n21!t,

la~n,n22!cosv~n,n22!t,...,

la21a~n,n2a!cosv~n,n2a!t,..., ~29!

where, as in Eqs.~25! and ~26!,

a~n,n!5a(0)~n,n!1la(1)~n,n!1l2a(2)~n,n!1¯ ,
~30!

a~n,n21!5a(0)~n,n21!1la(1)~n,n21!

1l2a(2)~n,n21!1¯ , ~31!

and

v~n,n2a!5v (0)~n,n2a!1lv (1)~n,n2a!

1l2v (2)~n,n2a!1¯ . ~32!

As Born and Jordan pointed out,4 some use of correspon
dence arguments has been made here in assuming thatl
→0, only transitions between adjacent states are poss
We shall return to this point in Sec. III C.

Heisenberg then simply wrote down what he asserted to
the quantum version of Eq.~28!, namely50

v0
2a~n,n!1 1

4 @a2~n11,n!1a2~n,n21!#50 ~33!

2v2~n,n21!1v0
250, ~34!

@2v2~n,n22!1v0
2#a~n,n22!1 1

2 @a~n,n21!

3a~n21,n22!] 50, ~35!

@2v2~n,n23!1v0
2#a~n,n23!1 1

2 a~n,n21!

3a~n21,n23!1 1
2 a~n,n22!a~n22,n23!50. ~36!

The question we now address is how did Heisenberg arriv
Eqs.~33!–~36!?

We shall show that these equations can be straight
wardly derived from Eq.~22! using the ansatz~29!, and we
suggest that this is what Heisenberg did. This seems to
novel proposal. Tomonaga8 derived Eq.~22! but then dis-
cussed only thel→0 limit, that is, the simple harmonic
oscillator, a special case to which we shall return in S
III C. The only other authors, to our knowledge, who ha
discussed the presumed details of Heisenberg’s calculat
are51 Mehra and Rechenberg.11 They suggest that Heisenber
1373Aitchison, MacManus, and Snyder
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guessed how to ‘‘translate,’’ ‘‘reinterpret,’’ or ‘‘reformulate
~their words! the classical equation~28! into the quantum
ones, Eqs.~33!–~36!, in a way that was consistent with h
multiplication rule, Eq.~10!. Although such ‘‘inspired guess
work’’ was undoubtedly necessary in the stages leading u
Heisenberg’s paper,1 it seems more plausible to us that by t
time of the paper’s final formulation, Heisenberg realiz
that he had a calculational method in which guesswork w
no longer necessary, and in which Eqs.~33!–~36!, in particu-
lar, could be derived.

Unfortunately, we know of no documentary evidence th
directly proves~or disproves! this suggestion, but we think
there is some internal evidence for it. In the passage to wh
attention was drawn earlier,44 Heisenberg asserted that h
formalism constituted a complete method for calculating
erything that needs to be calculated. It is difficult to belie
that Heisenberg did not realize that his method led directly
Eqs. ~33!–~36!, without the need for any ‘‘translations’’ o
the classical relations.

To apply the ansatz of Eq.~29! to Eq. ~22!, we need to
relate the amplitudesX(n,n2a) to the corresponding quan
tities la21a(n,n2a). We first note that in the classica
case,

Xa~n!5X2a* ~n!, ~37!

becausex(t) in Eq. ~2! has to be real. Consider, without los
of generality, the casea.0. Then the quantum-theoretica
analogue of the left-hand side of Eq.~37! is X(n,n2a), and
that of the right-hand side isX* (n2a,n) ~see Ref. 27!.
Hence the quantum-theoretical analogue of Eq.~37! is

X~n,n2a!5X* ~n2a,n!, ~38!

which is nothing but the relation̂ n2aux̂un&5^nux̂un
2a&* for the Hermitian observablex̂. Although X(n,n
2a) can in principle be complex~and Heisenberg twice dis
cussed the significance of the phases of such amplitud!,
Heisenberg seems to have assumed~as is certainly plausible!
that in the context of the classical cosine expansion in
~24! and the corresponding quantum terms in Eq.~29!, the
X(n,n2a)’s should be chosen to be real, so that Eq.~38!
becomes

X~n,n2a!5X~n2a,n!, ~39!

that is, the matrix with elements$X(n,n2a)% is symmetric.
Consider a typical term of Eq.~29!,

la21a~n,n2a!cos@v~n,n2a!t#

5
la21

2
a~n,n2a!@eiv(n,n2a)t1e2 iv(n,n2a)t#

5
la21

2
a~n,n2a!@eiv(n,n2a)t1eiv(n2a,n)t#, ~40!

usingv(n,n2a)52v(n2a,n) from Eq.~1!. If we assume
that a(n,n2a)5a(n2a,n) as discussed for Eq.~39!, we
see that it is consistent to write

X~n,n2a!5
la21

2
a~n,n2a! ~a.0! ~41!

and in general

X~n,n2a!5
l uau21

2
a~n,n2a! ~aÞ0!. ~42!
1374 Am. J. Phys., Vol. 72, No. 11, November 2004
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The casea50 is clearly special, withX(n,n)5la(n,n).
We may now write out the recurrence relations Eq.~22!

explicitly for a50,1,2,..., in terms ofa(n,n2a) rather than
X(n,n2a). We shall include terms up to and includin
terms of orderl2. For a50 we obtain

l$v0
2a~n,n!1 1

4 @a2~n11,n!1a2~n,n21!#1l2@a2~n,n!

1 1
4 ~a2~n12,n!1a2~n,n22!!] %50. ~43!

We note the connection with Eq.~27a!, and that Eq.~43!
reduces to Eq.~33! when thel2 term is dropped and an
overall factor ofl is canceled. Similarly, fora51 we obtain

~2v2~n,n21!1v0
2!a~n,n21!1l2$a~n,n!a~n,n21!

1a~n,n21!a~n21,n21!1 1
2 @a~n,n11!

3a~n11,n21!1a~n,n22!a~n22,n21!#%50 ~44!

@see Eq.~27b!#. For a52 we have

l$~2v2~n,n22!1v0
2!a~n,n22!1 1

2 a~n,n21!

3a~n21,n22!1l2@a~n,n!a~n,n22!1a~n,n22!

3a~n22,n22!1 1
2 a~n,n11!a~n11,n22!

1 1
2 a~n,n23!a~n23,n22!] %50 ~45!

@see Eq.~27c!#. For a53 @see Eq.~27d!# we obtain

l2$~2v2~n,n23!1v0
2!a~n,n23!1 1

2 @a~n,n21!

3a~n21,n23!1a~n,n22!a~n22,n23!]

1l2@a~n,n!a~n,n23!1a~n,n23!a~n23,n23!

1 1
2 a~n,n11!a~n11,n23!1 1

2 a~n,n24!

3a~n24,n23!] %50. ~46!

If we drop the terms multiplied byl2, Eqs.~43!–~46! reduce
to Eqs.~33!–~36!. This appears to be the first published de
vation of the latter equations.

In addition to these recurrence relations which follo
from the equations of motion, we also need the perturba
version of the quantum condition Eq.~16!.52 We include
terms of orderl2, consistent with Eqs.~43!–~46!, so that Eq.
~16! becomes

h

pm
5a2~n11,n!v~n11,n!2a2~n,n21!v~n,n21!

1l2@a2~n12,n!v~n12,n!2a2~n,n22!

3v~n,n22!#. ~47!

We are now ready to obtain the solutions.

C. The lowest-order solutions for the amplitudes and
frequencies

We begin by considering the lowest-order solutions
which all l2 terms are dropped from Eqs.~43! to ~47!, and
all quantities (a’s andv’s! are replaced by the correspondin
ones with a superscript(0) @compare Eqs.~30!–~32!#.53 In
this case, Eq.~44! reduces to

@2~v (0)~n,n21!!21v0
2#a(0)~n,n21!50, ~48!
1374Aitchison, MacManus, and Snyder
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so that assuminga(0)(n,n21)Þ0, we obtain

v (0)~n,n21!5v0 ~49!

for all n. If we substitute Eq.~49! into the lowest-order ver-
sion of Eq.~47!, we find

h

pmv0
5@a(0)~n11,n!#22@a(0)~n,n21!#2. ~50!

The solution of this difference equation is

@a(0)~n,n21!#25
h

pmv0
~n1constant!, ~51!

as given in Eq.~H20!.53 To determine the value of the con
stant, Heisenberg used the idea that in the ground state
can be no transition to a lower state. Thus

@a(0)~0,21!#250, ~52!

and the constant in Eq.~51! is determined to be zero. Equa
tion ~51! then gives~up to a convention as to sign!

a(0)~n,n21!5bAn, ~53!

where

b5~h/pmv0!1/2. ~54!

Equations~49! and ~53! were Heisenberg’s first results
and they pertain to the simple~unperturbed! oscillator. We
can check Eq.~53! against the usual quantum mechanic
calculation via

a(0)~n,n21!52X(0)~n,n21!520^n21ux̂un&0 , ~55!

where the statesun&0 are unperturbed oscillator eigenstate
It is well known that54

0^n21ux̂un&05S \

2mv0
D 1/2

An, ~56!

which agrees with Eq.~53!, using Eq.~54!. A similar treat-
ment of Eq.~43! leads to

a(0)~n,n!52
b2

4v0
2 ~2n11!. ~57!

Turning next to Eq.~45!, the lowest-order form is

~2@v (0)~n,n22!#21v0
2!a(0)~n,n22!

1 1
2 a(0)~n,n21!a(0)~n21,n22!50. ~58!

Because the combination law Eq.~8! must be true for the
lowest-order frequencies, we have

v (0)~n,n22!5v (0)~n,n21!1v (0)~n21,n22!52v0 ,
~59!

where we have used Eq.~49!, and in general

v (0)~n,n2a!5av0 ~a51,2,3,...!. ~60!

If we use Eqs.~53!, ~59!, and~60!, we obtain

a(0)~n,n22!5
b2

6v0
2 An~n21!. ~61!

A similar treatment of Eq.~46! yields

a(0)~n,n23!5
b3

48v0
4 An~n21!~n22!. ~62!

Consideration of the lowest-order term in Eq.~22! leads to
1375 Am. J. Phys., Vol. 72, No. 11, November 2004
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a(0)~n,n2a!5Aa

ba

v0
2(a21)A n!

~n2a!!
, ~63!

whereAa is a numerical factor depending ona; Eq. ~63! is
equivalent to Eq.~H21!.

It is instructive to comment on the relation of the abo
results to those that would be obtained in standard quant
mechanical perturbation theory. At first sight, it is surprisi
to see nonzero amplitudes for two-quantum@Eq. ~61!#, three-
quantum@Eq. ~62!#, or a-quantum@Eq. ~63!# transitions ap-
pearing at lowest order. But we have to remember tha
Heisenberg’s perturbative ansatz, Eq.~29!, the a-quantum
amplitude appears multiplied by a factorla21. Thus, for
example, the lowest order two-quantum amplitude is rea
la(0)(n,n22), not justa(0)(n,n22). Indeed, such a transi
tion is to be expected precisely at orderl1 in conventional
perturbation theory. The amplitude is^n22ux̂un& where, to
orderl,

un&5un&01
1

3
ml(

kÞn

0^kux̂3un&0

~n2k!\v0
uk&0 . ~64!

The operator x̂3 connects un&0 to un13&0 ,un11&0 ,un
21&0 , and un23&0 , and similar connections occur for0^n
22u, so that a nonzeroO(l) amplitude is generated in̂n
22ux̂un&.

It is straightforward to check that Eq.~61! is indeed cor-
rect quantum-mechanically, but it is more tedious to che
Eq. ~62!, and distinctly unpromising to contemplate checki
Eq. ~63! by doing a conventional perturbation calculation
ordera21. For this particular problem, the improved pertu
bation theory represented by Eq.~29! is clearly very useful.

After having calculated the amplitudes for this problem
lowest order, Heisenberg next considered the energy. Un
tunately he again gave no details of his calculation, beyo
saying that he used the classical expression for the ene
namely

W5 1
2 mẋ21 1

2 mv0
2x21 1

3 mlx3. ~65!

It seems a reasonable conjecture, however, that he repl
each term in Eq.~65! by its corresponding matrix, as dis
cussed in Sec. II A. Thusx2, for example, is represented b
a matrix whose (n,n2a) element is

(
b

X~n,n2b!X~n2b,n2a!eiv(n,n2a)t, ~66!

according to his multiplication rule, Eq.~10!. A similar re-
placement is made forx3, and ẋ2 is replaced by

(
b

iv~n,n2b!X~n,n2b!eiv(n,n2b)t

3 iv~n2b,n2a!X~n2b,n2a!eiv(n2b,n2a)t

5(
b

v~n,n2b!v~n2a,n2b!X~n,n2b!

3X~n2b,n2a!eiv(n,n2a)t, ~67!

using v(n,m)52v(m,n). The total energy is represente
by the matrix with elements

W~n,n2a!eiv(n,n2a)t. ~68!
1375Aitchison, MacManus, and Snyder
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It follows that if energy is to be conserved~that is, time-
independent! the off-diagonal elements must vanish:

W~n,n2a!50. ~aÞ0!. ~69!

The terma50 is time-independent, and may be taken to
the energy in the staten. The crucial importance of checkin
the condition Eq.~69! was clearly appreciated by Heise
berg.

To lowest order inl, the last term in Eq.~65! may be
dropped. Furthermore, referring to Eq.~29!, the only
l-independent terms in theX-amplitudes are those involvin
one-quantum jumps such asn→n21, corresponding in low-
est order to amplitudes such asX(0)(n,n21)5 1

2a
(0)(n,n

21). It then follows from Eqs.~66! and ~67! that the ele-
mentsW(n,n), W(n,n22) andW(n,n12), and only these
elements, are independent ofl when evaluated to lowes
order. In Appendix B we show thatW(n,n22) vanishes to
lowest order, andW(n,n12) vanishes similarly. Thus, to
lowest order inl, the energy is indeed conserved~as Heisen-
berg noted!, and is given@using Eq.~66! and Eq.~67! with
a50 andb561] by

W~n,n!5 1
2 m@v (0)~n,n21!#2@X(0)~n,n21!#2

1 1
2 m@v (0)~n11,n!#2@X(0)~n11,n!#2

1 1
2 mv0

2@X(0)~n,n21!#21 1
2 mv0

2

3@X(0)~n11,n!#2

5~n1 1
2!\v0 , ~70!

where we have used Eqs.~49!, ~53!, and~54!. Equation~70!
is the result given by Heisenberg in Eq.~H23!.

These lowest order results are the only ones Heisen
reported for thelx2 term. We do not know whether he ca
ried out higher-order calculations for this case or not. W
he wrote next55 is that the ‘‘more precise calculation, takin
into account higher order approximations inW, a, v will
now be carried out for the simpler example of an anharmo
oscillator ẍ1v0

21lx350.’’ This case is slightly simpler be
cause in the expression corresponding to the ansatz~29! only
the odd terms are present, that is,a1 ,la3 ,l2a5 , etc.

The results Heisenberg stated for thelx3 problem include
terms up to orderl in the amplitudes, and terms up to ord
l2 in the frequencyv(n,n21) and in the energyW. Once
again, he gave no details of how he did the calculations.
believe there can be little doubt that he went through
algebra of solving the appropriate recurrence relations u
order l2 in the requisite quantities. As far as we know, t
details of such a calculation have not been given before,
we believe that it is worth giving them here, as they are
both pedagogical and historical interest. In the following s
tion we shall obtain the solutions for thelx2 term ~up to
orderl2) which we have been considering, rather than s
afresh with thelx3 term. The procedure is the same for bo

Before leaving the lowest order calculations, we addres
question that may have occurred to the reader. Given tha
this stage in his paper, the main results actually relate to
simple harmonic oscillator rather than to the anharmo
one, why did Heisenberg not begin his discussion of
models with the simplest one of all, namely the simple h
monic oscillator? And indeed, is it not possible to apply h
procedure to the simple harmonic oscillator without goi
1376 Am. J. Phys., Vol. 72, No. 11, November 2004
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through the apparent device of introducing a perturbati
and then retaining only those parts of the solution that s
vive as the perturbation vanishes?

For the simple harmonic oscillator, the equation of moti
is ẍ1v0

2x50, which yields

@v0
22v2~n,n2a!#X~n,n2a!50 ~71!

for the amplitudesX and frequenciesv. It is reasonable to
retain the quantum condition, Eq.~16!, because this condi
tion is supposed to hold for any force law. If we assume t
the only nonvanishing amplitudes are those involving ad
cent states~because, for example, in the classical case on
single harmonic is present56!, then becauseX(n,n21)
5 1

2a(n,n21), Eqs.~16! and ~71! reduce to Eqs.~50! and
~48!, respectively, and we quickly recover our previous
sults. This is indeed an efficient way to solve the quant
simple harmonic oscillator.57 For completeness, however,
would be desirable not to have to make the adjacent st
assumption. Born and Jordan4 showed how this could be
done, but their argument is somewhat involved. Soon the
after, of course, the wave mechanics of Schro¨dinger and the
operator approach of Dirac provided the derivations u
ever since.

D. The solutions up to and includingl2 terms

We now turn to the higher order corrections for thelx2

term. Consider Eq.~44! and retain terms of orderl. We set
@see Eqs.~25! and ~26!#

v~n,n21!5v01lv (1)~n,n21!, ~72!

a~n,n21!5a(0)~n,n21!1la(1)~n,n21!, ~73!

and find

2lv0v (1)~n,n21!a(0)~n,n21!50, ~74!

so that

v (1)~n,n21!50. ~75!

If we consider Eq.~44! up to terms of orderl2 and employ
Eqs.~53!, ~57!, and~61! for the zeroth-order amplitudes, w
obtain theO(l2) correction tov(n,n21) @see Eq.~26!#:

v (2)~n,n21!52
5b2

12v0
3 n. ~76!

The corresponding corrections toa(n,n21) are found
from the quantum condition Eq.~16!. To orderl we set

a~n11,n!5a(0)~n11,n!1la(1)~n11,n!, ~77!

as in Eq.~73!, and find

An11a(1)~n11,n!2Ana(1)~n,n21!50. ~78!

Equation~78! has the solutiona(1)(n,n21)5constant/An,
but the conditiona(1)(0,21)50 @see Eq.~52!# implies that
the constant must be zero, and so

a(1)~n,n21!50. ~79!

In a similar way, we obtain to orderl2

An11a(2)~n11,n!2Ana(2)~n,n21!5
11b3

72v0
4 ~2n11!,

~80!

which has the solution
1376Aitchison, MacManus, and Snyder
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a(2)~n,n21!5
11b3

72v0
4 nAn. ~81!

We now find the higher order corrections toa(n,n) by
considering Eq.~43!. We obtaina(1)(n,n)50 and

a(2)~n,n!52
b4

72v0
6 ~30n2130n111!. ~82!

Similarly, we find from Eq.~45! a(1)(n,n22)50 and

a(2)~n,n22!5
3b4

32v0
6 ~2n21!An~n21!, ~83!

where we have used

v (2)~n,n22!5v (2)~n,n21!1v (2)~n21,n22!

52
5b2

12v0
3 ~2n21!. ~84!

These results suffice for our purpose. Ifn is large, they agree
with those obtained for the classicallx2 anharmonic oscil-
lator using the method of successive approximations.58

As an indirect check of their quantum mechanical validi
we now turn to the energy evaluated to orderl2. Consider
first the (n,n) element of 1

2mv0
2x̂2. This matrix element is

given to orderl2, by

1

2
mv0

2H 1

4
@~a(0)~n,n21!!21~a(0)~n,n11!!2#

1
l2

4
@4~a(0)~n,n!!212a(2)~n,n21!a(0)~n21,n!

12a(2)~n,n11!a(0)~n11,n!1~a(0)~n,n22!!2

1~a(0)~n,n12!!2#J 5
1

2
mv0

2Fb2

2 S n1
1

2D
1

5b4l2

12v0
4 ~n21n111/30!G . ~85!

Similarly, using Eq.~67! up to orderl2, with a50, the

(n,n) element of1
2mẋ̂2 is found to be

1

2
mv0

2Fb2

2 S n1
1

2D2
5b4l2

24v0
4 ~n21n111/30!G . ~86!

Finally we consider the (n,n) element of the potential energ
1
3ml x̂3. To obtain the result to orderl2, we need to calculate
the (n,n) element ofx̂3 only to orderl. If we use

x̂3~n,n!5(
a

(
b

X~n,n2a!X~n2a,n2b!

3X~n2b,n!, ~87!

we find that there are no zeroth-order terms, but twelve te
of order l @recall that amplitudes such asX(n,n) and
X(n,n22) each carry one power ofl#. We evaluate these
terms using Eqs.~53!, ~57!, and~61!, and obtain

2
5ml2b4

24v0
2 ~n21n111/30! ~88!
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for this term in the energy. If we combine Eqs.~85!, ~86!,
and ~88!, we obtain the energy up to orderl2,

W~n,n!5S n1
1

2D\v02
5l2\2

12mv0
4 ~n21n111/30!, ~89!

a result59 that agrees with classical perturbation theory wh
n is large,60 and is in agreement with standard second-or
perturbation theory in quantum mechanics.61

As mentioned, Heisenberg did not give results for thelx2

term beyond zeroth order. He did, however, give the res
for thelx3 term up to and includingl2 terms in the energy,
andl terms in the amplitudes. By ‘‘the energy’’ we mean,
usual, the (n,n) element of the energy matrix, which a
noted in Sec. III C is independent of time. We also sho
check that the off-diagonal elementsW(n,n2a) vanish@see
Eq. ~69!#. These are the terms that would~if nonzero! carry a
periodic time-dependence, and Heisenberg wrote62 that ‘‘I
could not prove in general that all periodic terms actua
vanish, but this was the case for all the terms evaluated.’’
do not know how many off-diagonal termsW(n,n2a) he
evaluated, but he clearly regarded their vanishing as a cru
test of the formalism. In Appendix B we outline the calcul
tion of all off-diagonal terms for thelx2 term up to orderl,
as an example of the kind of calculation Heisenberg proba
did, finishing it late one night on Heligoland.63

IV. CONCLUSION

We have tried to remove some of the barriers to und
standing Heisenberg’s 1925 paper by providing the detail
calculations of the type we believe he performed. We ho
that more people will thereby be encouraged to apprec
this remarkable paper.

The fact is that Heisenberg’s ‘‘amplitude calculus’’ work
at least for the simple one-dimensional problems to which
applied it. It is an eminently practical procedure, requiring
sophisticated mathematical knowledge to implement. B
cause it uses the correct equations of motion and inco
rates the fundamental commutator, Eq.~11!, via the quantum
condition, Eq. ~16!, the answers obtained are correct,
agreement with conventional quantum mechanics.

We believe that Heisenberg’s approach, as applied
simple dynamical systems, has much pedagogical value,
could usefully be included in undergraduate courses on qu
tum mechanics. The multiplication rule, Eq.~10!, has a con-
vincing physical rationale, even for those who~like Heisen-
berg! do not recognize it as matrix multiplication. Indee
this piece of quantum physics could provide an exciting
plication for those learning about matrices in a concurr
mathematics course. The simple examples of Eq.~10!, in
equations such as Eq.~22! or the analogous one for thel x̂3

term, introduce students directly to the fundamental quan
idea that a transition from one state to another occurs via
possible intermediate states, something that can take tim
emerge in the traditional wave-mechanical approach. The
lution of the quantum simple harmonic oscillator, sketched
the end of Sec III D, is simple in comparison with the sta
dard methods. Finally, the type of perturbation theory e
ployed here provides an instructive introduction to the te
nique, being more easily related to the classical analysis t
is conventional quantum-mechanical perturbation the
~which students tend to find very formal!.
1377Aitchison, MacManus, and Snyder
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It is true that many important problems in quantum m
chanics are much more conveniently handled in the wa
mechanical formalism: unbound problems are an obvious
ample, but even the Coulomb problem required a fam
tour de forceby Pauli.64 Nevertheless, a useful seed may
sown, so that when students meet problems involving a fi
number of discrete states—for example, in the treatmen
spin—the introduction of matrices will come as less of
shock. And they may enjoy the realization that the somew
mysteriously named ‘‘matrix elements’’ of wave mechan
are indeed the elements of Heisenberg’s matrices.

APPENDIX A: THE QUANTUM CONDITION, EQ.
„16…, AND x̂ p̂Àp̂x̂Ä i\

Consider the (n,n) element of (x̂ẋ̂2 ẋ̂x̂), which is

(
a

X~n,n2a!iv~n2a,n!X~n2a,n!

2(
a

iv~n,n2a!X~n,n2a!X~n2a,n!. ~A1!

In the first term of Eq.~A1!, the sum overa.0 may be
rewritten as

2 i (
a.0

v~n,n2a!uX~n,n2a!u2 ~A2!

using v(n,n2a)52v(n2a,n) from Eq. ~1! and X(n
2a,n)5X* (n,n2a) from Eq.~38!. Similarly, the sum over
a,0 becomes

i (
a.0

v~n1a,n!uX~n1a,n!u2 ~A3!

on changinga to 2a. Similar steps for the second term o
Eq. ~A1! lead to the result

~ x̂ẋ̂2 ẋ̂x̂!~n,n!52i (
a.0

@v~n1a,n!uX~n1a,n!u2

2v~n,n2a!uX~n,n2a!u2#

52ih/~4pm!, ~A4!

where the last step follows from Eq.~16!. We setp̂5mẋ̂ and
find

~ x̂p̂2 p̂x̂!~n,n!5 i\ ~A5!

for all values of n. Equation ~A5! was found by Born43

shortly after reading Heisenberg’s paper. In further devel
ments the value of the fundamental commutatorx̂p̂2 p̂x̂,
namelyi\, was taken to be a basic postulate. The sum r
in Eq. ~16! is then derived by taking the (n,n) matrix ele-

ment of the relation@ x̂,@Ĥ,x̂##5\2/m.

APPENDIX B: CALCULATION OF THE OFF-
DIAGONAL MATRIX ELEMENTS OF THE ENERGY
W„n,nÀa… FOR THE lx2 TERM

We shall show that, foraÞ0, all the elements (n,n2a)

of the energy operator12mẋ̂21 1
2mv0

2x̂21 1
3lmx̂3 vanish up to

orderl. We begin by noting that at any given order inl, only
a limited number of elementsW(n,n21),W(n,n22), . . .
1378 Am. J. Phys., Vol. 72, No. 11, November 2004
-
e-
x-
s

te
of

at

-

le

will contribute, because the amplitudesX(n,n2a) are sup-
pressed by increasing powers ofl asa increases. In fact, for
a>2 the leading power ofl in W(n,n2a) is la22, which
arises from terms such asX(n,n21)X(n21,n2a) and
lX(n,n21)X(n21,n22)X(n22,n2a). Thus to orderl,
we need to calculate onlyW(n,n21),W(n,n22),W(n,n
23).

~a! W(n,n21). There are fourO(l) contributions to the
(n,n21) element of12mv0

2x̂2:

1
4 mv0

2l$a(0)~n,n!a(0)~n,n21!1a(0)~n,n21!

3a(0)~n21,n21!1 1
2 @a(0)~n,n11!a(0)~n11,n21!

1a(0)~n,n22!a(0)~n22,n21!#%

52 5
24 mlb3nAn. ~B1!

There are twoO(l) contributions to the (n,n21) element

of 1
2mẋ̂2:

2 1
8 lm$v (0)~n,n11!v (0)~n11,n21!a(0)~n,n11!

3a(0)~n11,n21!1v (0)~n,n22!v (0)~n22,n21!

3a(0)~n,n22!a(0)~n22,n21!%5 1
12 mlb3nAn. ~B2!

There are threeO(l) contributions to the (n,n21) element
of 1

3ml x̂3:

1
24 ml$a(0)~n,n21!a(0)~n21,n!a(0)~n,n21!

1a(0)~n,n21!a(0)~n21,n22!a(0)~n22,n21!

1a(0)~n,n11!a(0)~n11,n!a(0)~n,n21!%

5 1
8 mlb3nAn. ~B3!

The sum of Eqs.~B1!–~B3! vanishes, as required.
~b! W(n,n22). The leading contribution is independe

of l. From the term1
2mv0

2x̂2, it is

1
8 mv0

2a(0)~n,n21!a(0)~n21,n22!, ~B4!

which is canceled by the corresponding term from1
2mẋ̂2.

The next terms areO(l2), for example from the leading
term in the (n,n22) element of13lmx̂3.

~c! W(n,n23). There are twoO(l) contributions from
1
2mv0

2x̂2:

1
8 mv0

2l$a(0)~n,n21!a(0)~n21,n23!

1a(0)~n,n22!a(0)~n22,n23!%

5 1
24 mlb3An~n21!~n22!. ~B5!

There are twoO(l) contributions from1
2mẋ̂2:

2 1
8 ml$v (0)~n,n21!a(0)~n,n21!v (0)~n21,n23!

3a(0)~n21,n23!1v (0)~n,n22!

3a(0)~n,n22!v (0)~n22,n23!a(0)~n22,n23!%

52 1
12 lmb3An~n21!~n22!. ~B6!

There is only oneO(l) contribution from1
3ml x̂3:
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1
24 mla(0)~n,n21!a(0)~n21,n22!a(0)~n22,n23!

5 1
24 lmb3An~n21!~n22!. ~B7!

The sum of Eqs.~B5!–~B7! vanishes, as required.
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36W. Kuhn, ‘‘Über die Gesamtsta¨rke der von einem Zustande ausgehend
Absorptionslinien,’’ Z. Phys.33, 408–412~1925!, paper 11 in Ref. 3.

37W. Heisenberg, as discussed in Ref. 11, pp. 243 ff.
38Reference 9, p. 193;F is any function defined for stationary states.
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