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ON QUANTUM MECHANICS Ii
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possible to extend the above theory to systems having several degrees

of freedom 2 (Chapter 2), and by the introduction of ‘canonical transfor-
mations’ to reduce the problem of integrating the equations of motion
to a known mathematical formulation. From this theory of canonical
transformations we were able to derive a perturbation theory (Chapter
1, § 4) which displays close similarity to classical perturbation theory.
On the other hand we were able to trace a connection between quantum
mechanics and the highly-developed mathematical theory of quadratic
forms of infinitely many variables (Chapter 3). Before we go on to

Editor's note. This paper was published as Z. Phys. 35 (1926) 557-615.
1 'W. Heisenberg, Zs. f. Phys. 33 (1925) 879.

M. Born and P. Jordan, Zs. f. Phys. 34 (1925) 858.

Henceforth designated as (Part) I.
2 Note added in proof:
A paper by P. A. M. Dirac (Proc. Roy. Soc. London 109 (1925) 642), which has
appeared in the meantime, independently gives some of the results contained in
Part I and the present paper, together with further new conclusions to be
drawn from the theory.
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discuss the presentation of this further development in the theory,
we first endeavour to define its physical content more precisely.

The starting point of our theoret1cal approach was the conviction
that the difficulties which have been encountered at every step in
quantum theory in the last few years could be surmounted only by es-
tablishing a mathematical system for the mechanics of atomic and
electronic motions, which would have a unity and simplicity comparable
with the system of classical mechanics and which would entirely consist
of relations between quantities that are in principle observable. Ad-
mittedly, such a system of quantum-theoretical relations between
observable quantities, when compared with the quantum theory

employed hitherto, would labour under the disadvantage of not

being directly amenable to a geometrically visualizable interpretation,
C‘I‘nce the mntIOn of elactrone cannnt he deceribhaed in termes of the
Jii1 Lii 111VUL1V1I1I Ul LliLLllivViio LQAalliiivlnl LU JuloLviliieu 111 LLei11io vl Lii
familiar concepts of space and time. A characteristic feature of the

new theory lies in the modification it imposes upon kinematics as
well as upon mechanics; a notable advantage, however, of this quantum

mechanics consists in the fact that the basic postulates of quantum
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feature of t w theory as, say, the existence of discrete vibration
frequen(:les in classical theory (cf. Chapter 3). If one reviews the

fundamental differences between classical and quantum theory,
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and in this paper, if proved to be correct, would appear to represen
a system of quantum mechanics as close to that of classical theory as
could reasonably be hoped. In this context we merely recall the
validity of energy and momentum conservation laws and the form of
the equations of motion (Chapter 1, § 2). This similarity of the new
theory with classical theory also precludes any question of a separate
correspondence principle outside the new theory; rather, the latter
can itself be regarded as an exact formulation of Bohr’s correspondence
considerations. In the further development of the theory, an important
task will lie in the closer investigation of the nature of this corre-
spondence and in the description of the manner in which symbolic
quantum geometry goes over into visualizable classical geometry-
With regard to this question, a particularly important trait in the
new theory would seem to us to consist of the way in which both
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continuous and line spectra arise in it on an equal footing, i.e., as
solutions of one and the same equation of motion and closely con-
nected with one another mathematically (cf. Chapter 3, §3); obv1ously,
in this theory, any distinction between ‘quantized’ and ‘unquantized’
motion ceases to be at all meaningful, since the theory contains no
mention of a quantization condition which selects only certain types
of motion from among a large number of possible types: rather, in

place of such a condition one has a basic quantum mechanical

antintinn (Chantar 1 £ 1Y whinrh ic annlirahla +A A1l wAccihla 4+xrevne ~F
c\:lua L1VUl1l \Ullal} Ler i, 3 1} vv1iiL1il 1O Cl.lJ iicauvlice LYV wy PUDDIUIC Lyycb Ui
motion and which is essential if the dynamic problem is to be given

a definite meaning at all.
Now, although we should like to be able to conclude that because
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of its mathematlcal simplicity and unity, the Drooosed theorv might
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the theory is not yet able to turmsh a solution to the pr1nc1pal diffi-
culties in quantum theory. The theory has not yet incorporated the

forces which in classical theory would be associated with radiation

/£ 71

there exist but a few indistinct indications (cf. Chapter 1, § 5). Never-
theless it would seem that these basic quantum-theoretical difficulties

assume an altogether different aspect in the new theory than

T 1

instance, the question of collision processes. Recently, Bohr
attention to the basic difficulties which (in the theory as employed
hitherto) confronted all attempts to reconcile the fundamental postu-
lates of quantum theory with the law of conservation of energy in
fast collisions. In the present theory, however, the fundamental
principles of quantum theory and the principle of conservation of
energy follow mathematically from the quantum-mechanical equations,
and hence the results of the Franck-Hertz collision studies would
seem to be natural mathematical consequences of the theory. One
may thus hope that a future treatment of collision problems based
on the new quantum mechanics may, just because of this organic

1 N. Bohr, Zs. f. Phys. 34 (1925) 142.
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relationship between the basic postulates and this mechanics, avoid
difficulties of the type mentioned above.

The question of the anomalous Zeeman effect seems to be hardly
different when handled by the theory proposed here than it was before,
It is true that the intimate connection between the ‘aperiodic’ and
the ‘periodic’ orbits inherent in the basic assumptions of this theory
entails the fact that we cannot be certain that Larmor’s Theorem
holds generally (Chapter 4, § 2); the assumptions for the validity of
the theorem are satisfied b Oy aii 0SCi illa tor, but no
nuclear atom. It is not likely, however, that this standpoint can lead
to an interpretation of anomalous Zeeman effects; rather the present

quantum mechanics may in the case of Zeeman effects have to

+ nnnrnconeiler hher -
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content with the same difficulties as the previous theory. Recently,
+hAno tha nrohlam nf annamalane Zaaman effarte hace antarad 2 nowr
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phase as a result of a Note published by Uhlenbeck and Go
lhese authors make the assumption that the electron itselt posseses
a mechanical and a magnetic moment (whose ratio should be twice as
large as for atoms), so that there should actually be no anomalous

A4 7 4
— Zeeman effects. By this assumption, difficulties as to statistical ——
xraiorh Sent A miialitativae avilanmatian Af rarianig
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weights are eliminated and a qualit:
phenomena connected with problems of multiplet structure and Zee-
man effects ensues. The question as to whether it can already
furnish a quantitative explanation of these phenomena can, of

e o f\‘
Oime Oi1
o

quantum mechanics.
Chapter 4 appear, as regards the Zeeman effects, to substantiate this
hope of finding a quantitative interpretation at some later date.

Finally, we have also attempted to treat a well-known statistical
problem by means of the methods furnished by the present theory.
It is well known that by quantizing the vibrations of a cavity within
reflecting walls and using classical methods one can arrive at results
which display a certain similarity with the hypotheses in a theory of
light quanta and which permit a derivation of Planck’s formula.
However, as Einstein2 has always stressed, this semiclassical treat-
ment of cavity radiation yields an erroneous value for the mean square

deviation of the energy in a volume element. This result must be

1 G. Uhlenbeck and S. Goudsmit, Naturwiss. 13 (1925) 953.
2 A. Einstein, Phys. Zs. 10 (1909) 185, 817.



15 ON QUANTUM MECHANICS II 325

regarded as a particularly serious objection to earlier methods in
quantum theory, since we are concerned here with a breakdown of
the theory even for the simple problem of a harmonic oscillator. On
the other hand, the above difficulty would arise in the statistical
treatment of the eigenvibrations of any mechanical system whatsoever,
e.g., a crystal lattice. Now, we have found that with the kinematics
and mechanics inherent in the theory presented here, the corre-
sponding calculation leads to a correct value for the mean square
deviation and also to Planck’s formula, a result which may well be
regarded as significant evidence in favour of the quantum mechanics
put forward here.

CHAPTER 1. SYSTEMS HAVING ONE DEGREE OF FREEDOM

1. Fundamental principles

We can thus speak of an infinite ‘matrix’ a.

I1. Elementary operations such as addition and multiplication of
quantum-theoretical quantities are defined in accordance with the
operational rules of matrix calculus.

I1I. Consider a given function f(x, xs,...,xs) defined through addition
and multiplication of given matrices, with xj, xa,...,xs denoting quan-
tum-theoretical quantities. We then introduce two types of derivatives
of f with respect to one of the quantities x (say, x1):

(a) Differential coefficient of the first type:

i T f(x1 + a1, x2, ..., xs) — f(x1, X2, ..., Xs) , ‘)

0x1 a—0 o
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where « represents a number and 1 the unit matrix defined by

(v ¢ ... ..
Jl IOr 1 = m

1= (6nm), Csnm == 10 " ;é m

(b) Differential coefficient of the second type: Defined through!l

of oD(f)
) = (4)
7241 8x1(mn)
wvirhara NIE\ vranracnntce +tha Aiaornnal crirn Af +ha madriv
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These two forms of differentiation will be distinguished typo-
graphically by different fraction strokes [thick stroke for (a), thin
for (b)].
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more natural. However, for some calculations derivatives of the
first type are more convenient to employ. It might be mentioned

generally that the introduction of a differential coefficient into

For the formulation of canonical equations it is important to establish
the fact that both species of differentiation (3) and (4) become identical

3 S, 4

1 Cf. Part I [paper 13 in this volume].
2 For the energy function H of Part I, instead of arbitrary functions such as

H* = X asrp®q’,

only those symmetrized functions giving rise to the same Hamilton equations
were permitted:

: % ps—lqrpl_

s+ 13-9

H= 2 as

Now, for these symmetrized functions H the following relations, derived in
Part I, apply:

oH 5 1 { 82‘:1 25*: )
— Asr s — lps—l—l rpl + ]ps—lqrpl— }
op s 1 z=0( ) I 1=1
s—1 oH
= X a r » ps-l-lqrpl _
’ 1=0 op
oH ¥ oH

8 r—1
—_— = ) A % ps-igr-1pl = 2 Asr 2 qr-1-1psqf = —.
oq s+1 -9 i=0 oq
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IV. Calculations involving quantum-theoretical quantities would
yield non-unique results because of the inapplicability of the commu-
tative rule in multiplication unless the value of pg—qp were pre-
scribed.l Hence we introduce the following basic quantum-mechanical
relation:

__" 5
P —gp=——1 (5)

We shall later discuss the physical significance of this relation ac-
cording to the correspondence principle. At this stage it would appear
important to stress that eq. (5), ch. 1, is the only one of the basic
formulae in the quantum mechanics here proposed which contains
into the basic tenets of the theory at this stage in so simple a form.
Furthermore, one can see from eq. (5), ch. 1, that in the limit £A=0,
the new theory would converge to classical theory, as is physically

eq. (5), ch. I, namely:
If f(pq) be any function of p and q, then

of —h
fg —af = — —
op 2m R
of h N
Pf - fp = ‘n—' ~ 2
0q 27l

since, if we assume these formulae to be valid for some given pair of
functions, ¢ and ¥, then they must also hold for ¢p+1 and ¢ - . The
former case, g+ is trivial; for the latter, ¢ -2, a simple calculation
yields:

P9 — ¥ = @(Pq — qY) + (P9 — 9P)¢

— ¢ <3zp op ¢> h _ olpy) h

op T op 27 op 271

for ppp—ip, the treatment is similar.

Now, the relations (6) hold for p and q. They must accordingly also
apply to every function f which can formally be expressed as a power
series in p and q.

)

! The equations of motion merely indicate that this difference has to be a
diagonal matrix.
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2. The canonical equations, energy conservation and frequency
condition

Let an energy function H(pq) be given, together with the associated

canonical equations

. OH . oH .
P - aq ’ - BP . ( )

It follows from the frequency combination principle
v(nm) + v(mk) = v(nk) (8)

that » can be expressed in the form

o (Wa— W) o
v(nm) = . (9)

Thus W is a diagonal matrix.

Then for any quantum-theoretical quantity whatsoever, the fol-

. .
1
v UL

a= —— (Wa — aW). (10)
7 )

I\

In fact a was (cf. Part I) defined through
a(nm) = 2niv(nm) a(nm).

Among the main tenets of the theory we here seek to build up, we
class the law of conservation of energy (H=constant) and the frequency
condition

H,—H
(v(nm) = _”__h_ﬂ ; H,=W,+ const).

We carry the proof through for both these conditions by inserting

egs. (6) and (10) into eq. (7), ch. 1. This yields

Wq — qW = Hq — qH

(11)
Wp — qW = Hp —qH
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or, equivalently,
(W —H)g —q(W — H) =0,

(W — Hp — q(W — H) = 0.

The entity W—H commutes with p and q, and hence also with every

function of p, ¢, in particular with H:

(W — H)H — HW — H) = 0.

H=o. (12)

Thereby the law of conservation of energy is proved, and H is estab-

lished as a diagonal matrix, H(nm)=~0,mH .

The frpmmn(‘v condition now follows directlv

ency conditio v from (11 ch 1:
J J A A NTAAL \ A ‘,’ A ¥ Y 4 o
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Thus far, we have proved energy-conservation and the frequency

condition from the canonical equations and the basic equation (S\

nem vy mmtrmasrrmademen manrd dlh A Ln am ey o AL PR
energy conser vatluu and the irequency condition to be correct. Hence

if the energy function H be given as an analytical function of any
variables P, Q then, provided that

h
PQ — QP = —1,
2m1

the following canonical equations always apply:

o=t oH p oH s

oP’ o Q (19)
This follows directly from the fact that the quantities PH—HP or
HQ—QH can be interpreted in a twofold manner, namely according to
(6), ch. 1 and according to (10), ch. 1.

3. Canonical transformations
By a ‘canonical transformation’ of the variables p, q into new variables
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P, Q, we understand a transformation in which

7.
n

pg—qp =PQ — QP = —- (16)

2mi’

as is suggested by the preceding considerations, since then the same
canonical equations (7), ch. 1, or (15), ch. 1, apply to P, Q as to p q.
A general transformation which satisfies this condition is

P = 5$pS-1

Q = Sq¢5-1,

wherein § stands for an arbitrary quantum-theoretical quantity. We

(17)

:

"
r
]
:
)
)
}
)
£
t

the simple property that for any function f(P, Q) it follows that

retaining the functional form. The proof of this contention for functions

in the sense of our above definition follows directly from the obser-
vation that the rule holds for sum and product with sum terms or
factors p, q.

<xrs Al e . YL o 2 £ 1. R sofxs

WIINg Ueorerl. 1f any pdu Ol vaiues po, do be glvcu which bd.l.lbl.y
(15), ch. 1, then the problem of integrating the canonical equations
for an energy function H(pq) can be reduced to the following: A
function S is to be determined, such that when

p =505,  q=>5q¢5 (19)

the function
H(pg) = SH(pogo)S— = W (20)

becomes a diagonal matrix. Equation (20), ch. 1, is the analogue to the
Hamilton partial differential equation, and in a sense stands for the
action function.

4. Perturbation theory

We consider a given mechanical problem defined by the energy
function

= Ho(pq) + AHi(pq) + A2Ha(pq) + ... (21)



15 ON QUANTUM MECHANICS II 331

and assume the mechanical problem defined by the energy function
Ho(pq) to be solved. Thus solutions pg, go of this problem are known;
they satisfy the condition pogo—qopo=(%#/271)1 and cause Hy(poqo) =Wo
to be a diagonal matrix. We then seek a transformation function §
such that

p="5poS™t,  q=>5q057L, (22)
and that

H(pq) = SH(pogo)S™ = W,

e.g., that the matrix H becomes diagonalized. To arrive at a solution
we try setting

S=1+ 25+ 25 + .... (23)
Then
1 - A f a0 rea9 P f A P~ o
S71=1— 251 + 42(5] — Sg) + 43 .... (24)
If for H we take the expression (21), ch. 1, we can collect together
1 £

powers of 4 to obtain the following equations of approximation:

Lo (na) \A/
HotPogo) = Wo
SiHo — HoS1 + H1 =W,

SoHo — HoSs + HeS? — S3HoSy + SiHy — HiSy + Hy = W, (25)

s PN N | (8] Aran 4hencs ol A ~ Wha $#alenen mce hhAacrion e A seprananm mam 4o
where Ho, Hy, ... are throughout to be taken as having arguments
Po, qo.

The first of the egs. (25), ch. 1, is already satisfied. The others can
be resolved in sequence, actually in just the same manner as in classical
theory, namely by first building the mean value in order to determine
the energy constant, after which the solution can straightway be
written down:

Wr = Fr, (26)
F,
Sr(m’n) = —-———-——hvo((n”z:i)) (1 _— 6nm),

where vg(nm) are the frequencies of the unperturbed motion. This
solution satisfies the condition

$-§* =1, (27)

wherein the tilde represents interchange of rows and columns (transpo-
sition) and the star denotes that we take the complex conjugate
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quantity. Since we shall later return to this condition from a more
general standpoint we confine ourselves at this stage merely to veri-

fying it to the first order of approximation, which we shall evaluate
right away. To this order, the relation runs

Sy L S* — O (28)
P 8 1 1 . \uul

The significance of eq. (27), ch. 1, lies in the fact that the Hermitian
character of the matrices p, q follows from it, since use of (22), ch. I,

q" = S'qps*1 = S71ge = g,

and analogously for p.
To first approximation it follows from (26), ch. I, as also classically,
that

W1 = Hi, (29)
so that
Hy(mn)
Simn) = ———— (1 — bpp) (30)
hvo(mn)

—This expression indeed satisfies the requirements (28), ch. 1, because

H, is assumed to be a Hermitian form. We can now evaluate the
energy to the second order of approximation and find

I Hi(ml)Hy(n)

v/

BT w(nl)

211\
’ \w1)

where the prime on the summation indicates that terms having a
vanishing denominator (/=n) are to be excluded.

One can progress in this way and successively determine all terms
of the W and S series. If we substitute the S series in (22), ch. 1, we
obtain the expansions

q = qo + Aq1 + A2q2 + ...,
P = po+ Ap1 + %P1 + ...

with known coefficients. Thus, for example, the first-order approxi-
mation runs

91 = S190 — qod1,

p1 = S1po — PoS1;

1 On noting the rule (55) —ba.



15 ON QUANTUM MECHANICS II 333

or, explicitly,

g1(mm) = %
(32)

pr(mn)

The formulae (32), ch. I, represent the outcome of Kramers’ dis-
persion theory!l in the ] mit of an infinitely low-frequency external

.—a

1 _,**7- 11 i AL ~inoaiala

field; this possibility of attaining a 51mp1e derlvatlon of formulae
otherwise obtained only on the basis of correspondence considerations
seems to provide a strong argument in favour of the theory put

forward here. Born?2 has derived eq. (31), ch. 1, on reinterpreting the
respective classical formulae. The terms with m=» in eq. (32), ch. 1,

ond to Kramers’ formula for normal di
\J ALANA w\J - A ACL ANJL AAJ A A 4.

QRirivr o 4 LALWA

c+
oS} \
3
£
o+

Heisenberg3 for ‘scattered light of combination frequencies’. The latter

expressions were used by Pauli4 to evaluate the intensities of tran-
sitions in Hg which take place in presence of external electric fields

and whi h would otherwise be ‘forbidden’. In order to derive the

QAL N eala vailad ASN/a asANaNaTa v avaiax

)
\

not vanish), one needs more general considerations regarding the

action of external fields which change in function of time. We now
pass over to such considerations.

€

energy function’

Treatment of the quantum-mechanical influence of external forces
which explicitly depend upon time seems to us to be of especial
interest in that therein some characteristic differences crop up between
classical and quantum mechanics. The problem of the action of time-
dependent external forces can be regarded as a limiting case of the
Interaction between two systems in which the influence of the inter-

1 H. A. Kramers, Nature 113 (1924) 673; 114 (1924) 310; cf. also R. Ladenburg,
Zs. f. Phys. 4 (1921) 451; R. Ladenburg and F. Reiche, Naturwiss. 11 (1923) 584.
2 M. Born, Zs. f. Phys. 26 (1924) 379.

3 H. A. Kramers and W. Heisenberg, Zs. f. Phys. 31 (1925) 681.

4 W. Pauli, Verh. d. Din. Akad. d. Wiss. (in press).
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action on one of the two systems (termed system A) is so small that the
action upon the other system (system B) remains unaffected by this
influence. If we now consider the couphng of two systems A, B from
the standpoint of quantum mechanics, the Hamilton function decom-
poses into three parts, Hy, AHg and eAH4p (With A at this stage an
arbitrary parameter and ¢ a small quantity). We take system A to be
known. For calculating the motion of B according to classical theory it

suffices to establish the equations of motion [from the Hamilton

fiinectin fAr +ha rAinatacs ~f R whaorahyry fAr +L .
Lull\/ L].Ul-l ﬂ\' IBT Cl 'AB}J 1U1 Lllc \/UUL LiliiiaiLco Ul 7, Y¥¥11iTl Cuy 1U1l L1icC

coordinates of A one substitutes their solutions in function of time
(for the definite given values of the constants in 4). By this means,
apart from the constants of 4 only the time enters as a new variable
into the perturbation problem for B when the reaction is neglected.

terms proportional to ¢ in the coordinates and momenta of the system
B). It is altogether otherwise, however, for higher-order perturbations,
since in the evaluation of higher-order perturbations we encounter

In ‘H'lp au antitm-mechanical calenilatinn the citi1ation ic 1mct the came

X ¥ 3 \.-1 CLUAL L UALLIL LILLUNVALOLVALAVOUVE VLAV LALCL LAV AL Lilw vJALiALL VAV AL AW Juu\, CAAN Julll\/’

e A e e ez~ e mdant A PRSI, PR S S [PPSR LD, I 1. J /2

PIUVJ.U..UJS WE 1IE5L11CL OuIsSeives LW 1S L-o1rdcel }_)CLL 1 0DdL101l> \I.C.,
t

— mechanical rule for building a product it by no means suffices to know

the ‘external forces in function of time’ merely for the given values

of the constants in A4, but these external forces must be known for

forces anpnears 1n fart +tn hacrname davnid Aaf maeaanine Fic Aifficniltvy
1 PPrals iid ialli U Ulluinal UCvUlu Ul 1iTaildiiil 41115 \aliiilurly
P S G I 1. AL 4 4l o at . tu_ 1L
SEEems 10 us 10 De overcomme on O[)beerllg llat Liie 1edCL10il 1LScEll

gives rise to terms of order Ae2 in the coordinates of B, and thus that
simultaneous neglect of the reaction and evaluation of terms in B
containing ¢2 is meaningful only if 4 can also be taken to be very small,
i.e., physically, if variation of the quantities in 4 by amounts of the
same order as the associated quantities in B does not bring about
any perceptible change in the influence of 4 upon B. However, in this
approximation the quantum-mechanical construction of products
and thereby the calculation of the perturbations to higher orders in &
can again be effected. In fact, the rules for this building of products
reduce simply to those of classical multiplication, as in this approxi-
mation the coordinates, amplitudes and frequencies which enter into
Hap do not depend on the constants in A. In this sense one could, for
example, treat the action of a strong alternating electromagnetic field
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on an atom entirely as the influence of an ‘external force’ with neglect
of the reaction, since the field energy can be regarded as infinitely
Jarge compared with that of the atom. The action of a-particles upon
the electrons of an atom could also be regarded as an ‘external force’,
as in classical theory, because of the relatively large energy of the
a-particles, so that in this approximation the Fourier expansion of the
force thereby exerted upon the electrons would also be that of classical
theory. However, the action of forces due to one atom upon another

~ny +1 of + 1 ¢ 1+
can never be treated as an operation of external forces — i.e., it can

thus be regarded only in the first-order terms, for which such an
approach is always possible — since the neglect of the reaction would
in the higher-order terms lead to false results.

We can summarize the outcome of our considerations thus: It is
meaningful under certain assumptions in quantum as in classmal
41 o 4 Y CoaY o at . _fouar X _ X4 Lo o 4
tneoly Lo spea I e daCtion Ol une-dependciit 101€es upoil dii 4loi1n

In such instances, the classical calculation rules can be applied to
expressions in which the time parameter figures explicitly: e.g., if
the external field of force be periodic with a period »g, then the general

: 5 b wri

almn. 1) e2nilrimn)+mvolt (33)
V AAACIAY B ’ o)

—and the general termofg¢2as
Z q(mk, T — 7')q(kn, v')e?mLmM T ™ol (34)

T

For this reason the case of external forces which vary with time seems
in our view to provide a striking illustration of the transition from
theoretical quantum kinematics into classical kinematics according
to the principle of correspondence.

If one is concerned with the evaluation of the operation of external
forces to first order only, the results which ensue from the calculations
which follow remain correct even if the assumptions listed at the
outset are not obeyed — in exact analogy with the situation in classical
theory.

From the preceding considerations it follows that the mathematical
treatment of systems in which (provided the assumptions mentioned
above are valid) time enters explicitly is simply to be handled in a
manner analogous to the corresponding classical procedures. If we
again assume the external force to be periodic in time, with period
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vo, the Hamilton function becomes1
H = H(px, qx, cos 2avol). (35)

We then introduce a new degree of freedom with the variables q’, p’
and take the following as the Hamiltonian of the new problem, in
which time no longer figures explicitly:

H' = H(px, 9%; q') + 2oV 1 — q'2p/. (36)

Thereby the canonical equations for pg, qx remain as hitherto, except
that q" is throughout written for cos 2av¢f. The new equations are:

oH’

., - yPa—
qg = YA <cnvoV 1 —qse,
“P

COS ﬁ_,. 4 faaam Ao~ an malntdanss ey ~h ot~ ~ s a— ~
COUS LTtV \UP LU dIl divliLlidl Cl1u1CcC O
that the canonical equations for pg, qx take on the same form as in the

earlier problem; the second equation (37), ch. 1, provides a determi-
nation of p’. Thus through (36), ch. 1, the problem (35), ch. 1, is really

e
*fh—t—b—t—f—l—ﬁﬁ)—l’fl—h—t—b—(ﬁ—(frf*ﬁme*eperur ation formulae , ch. I, have to be modified if ti

enters explicitly into Hj, Ha,... but not into Hy. Simple considerations
show that for this case the perturbation formulae ensue from those
cited earlier on replacing every term of the form HyS,—S,Hop by
HoS, —S,Ho + h %
0 o 2m ot
(note that Hgy occurs only in such combinations). Thus the lowest
orders of the new perturbation formulae run:

Ho(pogo) = W,

h 05
SiHo — H¢S1 — —— 21 + Hy = W;j, (38)
2m ot

1 Here we anticipate for a moment in availing ourselves of results derived in
the next chapter for systems having several degrees of freedom.
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h 0S h oS
SoHo — HoSz — —— —0 + (H051 —S1Ho + - — - ) $1 (38)

ot
\ Vv 7

+ S1H1 — HiS1 + He = Wy,

.....................

We should like to assume that even if the assumption that the external
forces are periodic in time does not apply, these formulae (38), ch. 1,
nevertheless remain valid — even though this assumption was incor-
porated into the derivation of the formulae.

The first-order equations in the formulae (38), ch.1, which of
course remain correct even if the assumptions regarding ‘external

)

a = do + ]_.(.Sﬂ]n —_— an_S1\A

T Jv i \Tajgv AR YA

P 1 LI s o £\

P = Po 1T AP1P0 — P0°1),
'F‘l‘l?‘ﬂ‘;c 2N ANCWxrar +n + =Y nrnh]amc f\‘F A;cnnrc;nn ]ﬂnf\‘l"TT ‘iﬂ o GQY\D‘I"O]
AULA A1AJAA QLAL CLALOD YY UL v (%3 & L WA lJLVULL/l-ALJ \Ji \.LLJIJ\/LJLVLL LLL\/VLJ 441 6\/11\-«1“1

then

Ee Ee

y {arrnn 1 — P ITITL U-IM/IM J— l\ —_— n-lmM\

i 1\”[/’0, l, — 2 YU\I’(I’V,’ 4 L l\”'l’ll, l, 2 YU\"V’P,,
Ee (1mn)

Sy(mn, 1) = o (39)
2h  wo(mn) 4+ vo
Ee go(mn)

Si(mn, — 1) =

2h  wo(mn) — vo
Thence follows (cf. (22), ch. 1):

_ Ee qo(mk)qo(kn)  qo(mk)qo(kn)
qalmn, + 1) = —5- 2 ( vo(mk) +v0  volkn) + v ) - (0

2h %
If we assume that we have Cartesian coordinates, i.e., p=mgq, then

Ee qo(mk)po(kn) — po(mk)qo(fn)
2h-2nim % (vg(mk) -+ vo) (vo(kn) 4+ vo)

; (41)

qi(mn, 1) =

and similarly
Ee qo(mR)po(kn) — po(mk)qo(kn)

- 2h-2aim % (vo(mk) — vo) (vo(kn) — v0) (42)

q1(mn, — 1)
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The eqgs. (40), (41), (42), ch. 1 agree with the formulae obtained from,
Kramers’ dispersion theory.l A further particularly interesting case
would seem to be that for incident light of very high frequency,
|vo|>>|vo(mkR)| or |vo(kn)|. Then to first-order approximation one finds

Ee

= — ———— (Pogo — 2v,
q1 2ot (Pogo — qopo) cos 2o

or, because of (5), ch. 1,

= 4 Ee 2nvot (43
= 4+ ———— cos 2mgt.
o 4r2mvy o )

This findineindi hat in fact ¢ hanical

PR, P <r P P PO SRS N S A £33 At
tation relation (5), ch. 1, ultimately entails the fact that for sufficiently

high frequencies the electron behaves on scattering like a free electron.
The scattered light of frequency vo(mn)+vo(m7#n) vanishes, and that
of frequency v has the intensity to be expected for scattering by a free

electron. .2

i oIt

CHAPTER 2. FUNDAMENTALS OF THE THEORY FOR
SYSTEMS HAVING AN ARBITRARY NUMBER

~ OF DEGREES OF FREEDOM

1. The canonical equations of motion; perturbation theory for
nondegenerate systems

For several degrees of freedom (f>1) it rather suggestsitself that we re-

place the representation of quantum-theoretical quantities by two-

dimensional matrices by one in terms of 2f-dimensional matrices,

corresponding with the 2f-dimensional manifold of stationary states

in the classical J-space:

9k = (qx(n1 ... ng, my ... ms)),

br = (pk(nl o By, M WLf))

(1)

Nevertheless this representation, albeit under certain circumstances

1 Cf. the discussion at the end of § 4 of results obtained for »o=0.
2 Cf. the articles by W. Kuhn, Zs. f. Phys. 33 (1925) 408; W. Thomas, NatuI-
wiss. 13 (1925) 627; F. Reiche and W. Thomas, Zs. f. Phys. 34 (1925) 510.
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very convenient and clear, is by no means essential. Even for several
degrees of freedom the fundamental dynamical equations assume the
form of matrix equations, but these matrices can as heretofore also be
written in two-dimensional form. It became apparent even for one
degree of freedom that the sequence of the stationary states as given
by the ordering of the matrix rows is (in contradistinction to the
theory employed hitherto) purely fortuitous and is not governed by

any intrinsic property of the system. This observation can now

ndler hhn rafaread manv-dimensional
(_uu:t,u_y be reierred to many-air alu"i al ifia

out any arbitrary rearrangements and in particular transform the
2f-dimensional matrices into two-dimensional ones. This is justified
by the fact that the basic definitions of addition and multiplication,

4““ ﬂl\ +l\l‘\ . I\“I\ (2% ot o0 ¥ 4
allilT LUV, V11T Lail Ld.l.ly

as also of differentiation with respect to time, are clearly independent

of any ordering relations between the basis systems indices 71,
ng,..., ng, which taken singly specify the states and in pairs specify the
transitions.

It is thence also clear that the general rules of matrix analysis, as

presented in chapter 1 of Part I and in chapter 1 of the present paper,

. oH . oH i
T oy PE=— ' \4)
Pk

The principal new feature distinguishable from those obtaining for
systems with just one degree of freedom lies in the general commu-
tation relations for px and qi in the case of several degrees of freedom.
Just as in the calculations for but one degree of freedom, so here also
calculations with quantum-theoretical quantities would be to some
extent indefinite if the ‘commutation relations’ were not specified.

As a plausible generalization of egs. (5), ch. I, the following equa-
tions suggest themselves:

h

— -4
Prqi qiPk o kl,

pxpr — pipx = O,
qrq1 — qi9x = O,

)
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if H denotes the (symmetrized) energy function, one can in conse.
quence of these relations replace egs. (2), ch. 2, by

o oH 2
kK = —, = —  em———
ot 29 )

Further, it follows from these relations,! as in chapter 1 of the present
paper, that

o h
PxI(q1 --- qf, P1 ... Pf) Pr = 2m oqr
g 4)
fae — qif = —— P

v

f(_)llows‘fr()m (2') and (4), ch. 2, as shown in r‘h 1. Simﬂarly one can

et C O -2 R i3 ail

>

ch. 2, apply whenever the relations (3), ch. 2, are satisfied for a system

Px, Qr and the energy function i1s given as an analytical function of
the Pk and Qk.

Thus a transformation of the variables pg, gz into new variables

¢ . y o .
) b . )

A very general class of such transformations is again given by the
formulae
5
Qr = SqxS1

This transformation again has the property of converting every
function f(PQ) into

f(Plr REY) Pf’ Ql» ) Qf) =Sf(P1» v PH QL - qf)s—l (6)

If a system pY, ..., p7, q), ..., q is known, and satisfies the relations
(3), ch. 2, then the problem of integrating egs. (2), ch. 2, again reduces
itself to the simpler problem: A function § is to be sought, such that
it satisfies the equations

— Sp0 -1
Pk = SP S (53)

qr = S¢;S~!

1 The physical significance of these relations for dispersion theory is discussed
by H. A. Kramers, Physika, December 1925.
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and transforms H into a diagonal matrix,
H(pq) = SH(pOg)S1 = W. Y

Equation (7) again represents the counterpart to the Hamilton
partial differential equation.

Equations (3), ch.2 would, together with (2), ch. 2, obviously
entail too extensive a set of requirements for the pg, q, if all these
equations were independent of one another. As an interesting mathe-
matical problem must rank the derivation of egs. (3) using the least
number of independent and mutually consistent assumptions; never-
theless, this question will not be handled here. We shall content
ourselves with mentioning that

is a general outcome ot the equations ot motion (1), ch. 2. On the
other hand, it will be shown generally that the egs. (3), ch. 2, together

with the equations of motion (2), ch. 2, or the equivalent requirement

the perturbation theory presented in ch. 1 §4, when extended to
arbitrarily many degrees of freedom. We consider the energy function

H(pq) such that it can be written as

= Mo 1 q 2 q ceey
so tha

f
Ho(pq) = kEIH"‘)(Pka)-

Thus for A=0 we have f uncoupled systems, each having a single
degree of freedom; the f cases

H = H®(pyqs)
can be solved with
9% =Gr 9k = Pi»
wherein g3, py are two-dimensional matrices,
G (qh(wm));  py: (PR(nm)). (10)

If we formally regard these f uncoupled systems as a single system
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having f degrees of freedom, then qY, p2 would be represented ag
2f-dimensional matrices,

G = (a(my ... np; my...my)),
pr = (Pa(m1 ... np; m1...my)),

(11)

for which

qa(my ... mg; my ... mg) = Oxqu(nrmy),

Pg(nl nf; mi ... mf) = 6kp2(nkmk),

where dx=1 if ny;=my; for all 7 except j=&, and dx=0 if for any 7(j #%),

__my is not equal to my. Thence, however, one sees: firstly, that the

L
0.0 e
prar — Qb = — 1 (12)
27l
winic orlglna y obtalne or e lwo-armensional matrices , CIL. 4,

also hold for the 2f-dimensional matrices (11), ch. 2; secondly, that
the following relations ensue:

piq) — qiph =0 for I #k,
050 — p000 00 00 _ g ()
PPt — PP = %8 — 19 = Y-

ence for A=0, a gs. ,ch. 2,1 .
that p, ¢ can be determined in such a manner that (3), ch. 2, is satis-
fied simultaneously with H=W for the higher-order approximations
also. One again assumes the system Hp to have been chosen as non-
degencerate, i.e., that on substituting q=q% p=p® no two diagonal
elements of Hy become identical. In this case we again have to set

Gk =555 pr = SpS? (14)
as in eq. (5a), ch. 2, and to determine
S=1+4 AS1 + 4353 + ...

in such a way as to satisfy the relation H=W. The egs. (3), ch. 2, are
then jointly also satisfied, since by virtue of (14) they go over into
(12), (13). This completes the required proof.

Equations (3) are invariant with respect to a linear orthogonal
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transformation of the gz and pg, for if one sets

’
9k = X axq1,
l
, 2 axiaz = Oy,
Pk = X aripL, 1
l
then
h
Prql — qibk = Z aknay(Pngs — 9spPn) = Okt ——-
271
and eimilarlv for the other recnactive relatione If then the canditianc
dlll Siiilixaliiy 1UL LT Uil L\.«qyuu»;v\.« ATLIALIVILS, &1 wiiTir wiT COULIUILIUILS
2 LR MU S T T T S SN o S P S 1 vstem. thev will al
‘ ), Cil. <4, 11014 101 4 ivern var LCbld.Il LUUIU.].“.d,Lc by Il, Uley W1l alSo

be valid in every other Cartesian coordinate system.
By way of supplement, now that we have established (3), ch. 2,
e demonstrate that a well-known law of classical mechanics is also

tible with the new theorv.

... Avas viaANs aa vaALASA T .

(‘)

T o4
LCL

b

L - ; p
H=tkln+tpot='§'

4|

P + Epot’ (15)

K

w»

and let E,,, be a homogeneous function of the coordinates of order #.

4 L1C11 11VU1ld \UI, Vil L,
£ ] v OE o1 6
pot — n aqk qk ( )
and
3 ZPie =2 (Prqx + Prqr) = 2Epy — ME o,
so that for the mean values,
Ekin = %’nEpot' (]7)
Hence, e.g., for n=2 (harmonic oscillations), Ekm=Epot and for n=—1

(Coulomb force), E, = —&Epot.

2. Degenerate systems

Weae now f-um +n evam;nat;r\n of degenerate evvetame Tf we narmit enme
YV o AAUVV Y L % 4 AL LWV s Y ALRAAL ANJAL VA u\.&b AAACL VL \JJ WwOLLUA4AlADe AL VY U IJ\II. AALL L IVl
Af 4L . L et o fa L —emenio 1. /£ Y. SV, 5 S SIS U &
Ul LIIE€ 1requceilClies \ ) to chubu \ SUNPIICILY, W€ 1II4dgINeE e
matrices to be in two-dimensional representatlon) then energy conser-

S b
vation, H=0 can still be derived from the considerations employed
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here and in Part I concerning the equations of motion and the com-
mutation rules (3), ch. 2. But the relation H=0 no longer necessarily
implies that H be a diagonal matrix and in consequence the proof of
the frequency condition cannot be carried through. Thus for degenerate
systems the equations of motion together with (3), ch. 2, do nof alone
suffice for the unique determination of the properties of a system: we
need to strengthen these basic equations. An obvious assumption as
to the form of this ‘increase in rigour’ is:

For basic equations, one should be able gene

relations and the property
H = W = diagonal matrix. (18)

This requirement manifestly ensures the validity of the frequency
condition for degenerate systems as well. Very probably, the energy

A
W is also fhprphv uniaguelv determined (apart from sn’lgular 1nstances)_

AT Radv WAL Bay MmN\ & e

’ | (19)

~\
l1nence

WS —SW=5—_=0
2ni ’
and thus
S = const. (20)

Let us at this stage examine this result as regards its implications
for nondegenerate systems. From (2), ch. 2, the matrix S has to become

a diagonal matrix, and the eqgs. (19), ch. 2, imply that
p'(wm) = p(wm)S, Sy, 19
g'(nm) = ¢(nm)S,S.",

writing S,, for S(nn) for the sake of conciseness.
The uncertainty in the solution indicated hereby can significantly
be reduced by the requirement that the new solution p’, q’ should
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also represent ‘real’ motion, expressed in terms of Hermitian matrices,
since this yields
-1 -1
|SnSn | = ISmSm l,

or

NIE (21)

Sl

Thus the indeterminacy which has here come to light represents an
arbitrariness of the phase constants. We namely here find proof of

in n11t farvard in Pard T that in anrh nrahla fAr axrarer
1011 pul 10TrwalQ iil ralt i uddi il Calil pPI Oo1CIN 1071 CVCLy

state #» a phase ¢, always remains undetermined. From (19’) one can
perceive the manner in which these phases enter into the elements of
the matrices p, q. It was further conjectured in Part I that apart from
the above-mentmned arbltranness of phase for non—de.c_r enerate

-
i

)]

§ 4. However,
this obviously does not imply that new phases Whlch remain unde-

termined enter into each approximation. It is easy to see that utili-

3

termined phases.
If we now go over to degenerate systems, we cannot any longer
infer from (20) that$ is a diagonal matrix, and accordingly, using (19),

arao C'Iﬂ“‘l{'lf‘ﬂ“"']‘f A1 {DY‘QY\*’ 'F‘I"f\m H n T 1 1N Dfnf‘m‘lnﬁf‘" caaMmac +f\ ]1(‘\
alLv Dlslllll\lall Ll CLllllLVlVilLy 11Vila F, \,. 4 1110 1lil\udv vl llllllab] DUV 1110 LU 11T
in the very nature of things. Apparently, degenerate systems possess a

lability by virtue of which arbitrarily small perturbations can bring
about finite changes in coordinates, and this finds its mathematical
expression in that in complete absence of perturbations, the solution
of the dynamic equations remains partly indeterminate. Naturally,
for every actual atom the coordinates which specify the physical
properties of the system, in particular the transition probabilities,
are always fixed uniquely either by external perturbations or by the
previous history of the system.

Now we set out to examine the influence of arbitrary perturbations
upon the degenerate system. We set

H(pq) = Ho + AH1 + A2Hg + ..., (22)
and let p9, q0 be an arbitrary, but definite, solution of the unperturbed
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problem:
Ho(p%®) = Wo. )
Then with
p =5pOs—i,
q = 59%1,
and with
S =So(1 + AS1 + 225 + ...), (24)
Sl = (1 — A(S1 + ASz ...) + 42 ...)S;%, (25)
we find, on leaving out the arguments p9, q0 from Ho, Hy,...:
SoHoSy ! = W, (26)
SoS1HoSy ! — SoHoS1S5 ! + SoHiSy ! = Wi, (27)
SoS2HoSy  — SoHoS25; o2 1H2;31)3g = Wy,
SoSrHoSg ! — SoHoS:Syt
+ Sofr(HoH1 ... Hy, S1 ... S¢-1)Sg - = W, (29)
us we almost repeat egs. , ch. 1, but wi e difference that the

left-hand sides are throughout multiplied on the left by So and on the

right by S; .
now has to be used to advantage so far as possible in order to rer
the next equation soluble. Naturally, one cannot expect that every
solution of H=H,, and thus in particular the chosen solution p9, q9,
will provide the limiting case A = 0 of the solution p, q of the problem
(22), ch. 2. The function So should serve to obtain from p9, q0 that
solution of the degenerate problem which possesses this desired pro-
perty.

We can rewrite eq. (27) as

SiHo — HeS1 + H; = So—lwlso. (30)

3
3
]
h ey

To make this soluble, one has to determine Sg such that
Hy = Sy 1WiSo (31)

for a diagonal matrix Wi. An indication as to how one can simul-
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taneously satisfy this eq. (31) and the requirements dictated by (26),
ch. 2, can here naturally just as little be given as that for the deter-
mination of secular perturbations in classical theory. We shall, however,
later use a new algebraic method to arrive at a simple treatment of an
extensive class of degeneracies (ch. 3).

If (31), ch. 2, is satisfied, (30), ch. 2, can be solved as in ch. 1
Thereby those terms Si(nm) of S; for which vo(nm) vanishes remain
arbitrary, and this indeterminacy has to be utilized in order to solve

m m oh ha
the next higher order approximation formula, which can be trans-

cribed as
SoHg — HgSe + F3 = 561W2So (32)

in order to fulfil the necessary relation

Fz(Ho, Hi, Hs; 51) = SO_IWZSO (_31')

with Wz a diagonal matrix. This has to be satisfied for the problem
to be soluble. The continuation of the procedure is clear.

ThP difficultv lies in ‘rhp fact that at each order of a

iculty lies in the fact that at each order of app

. .
roxvimation
A NSLMALLAL A CANJ AL

large extent, so that it is not perceptible whether or not these equations

will really prove soluble. In classical theory there is, though, an
altogether analogous difficulty. These difficulties can, at least in the

higher orders of approximation, be removed if in some approximation

-
!
y

PR e o=t

q=4q%+ 4q® + ...,
p=1p0+ p® 4 ...

have really been determined, so that with

Q = qo + Aq®

P = p0 4 2p@
one has

H(PQ) = Wo + AW1 + A2H3 + A3H3 + ...,
and suppose

vo(nm) + Avi(nm) £ 0 for n # m.
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If for brevity we write Hp for Wo+AW; and set
p =SPS
q = SQS1,
then we have to build the following relation,
S(Ho + A2H3 + A3H3 4 ...)S"1 = W,
which, with the procedures of ch. 1, can be achieved with

S =1+ 2255 + 2353 + ....

The generalization of these considerations for the case in which only

inthe 7th approximat in-a nond

\AZ | | | qr\Az 1

W=Wo+AWi+...+A"W, follows of itself
In conclusion, we deem it important to point out that the notorious
convergence difficulties encountered in the classical perturbation

series, which play so decisive a réle in the discussion of the three-body

periodic also.

m
I
m
=
E.

EIGENVALUES O

1. General method

The treatment in the preceding sections has aimed at solving the
basic quantum-theoretical equations in a manner as closely parallel
to classical theory as possible. But behind the formalism of this
perturbation theory there lurks a very simple, purely algebraic
connection and it is well worth while to bring this into the limelight.
Apart from the deeper insight into the mathematical structure of the
theory, we thereby gain the advantage of being able to use the methods
and results developed earlier in mathematics. We shall thus arrive
at a new definition of the energy constants (‘terms’) which remains
valid in the case of aperiodic motion also, i.e., of continuously-varying
indices. Thereby we attain the prospect of finding methods for direct

1 Analogous cases in classical mechanics have been discussed by M. Born and
W. Heisenberg, Ann. d. Phys. 74 (1924) 1.
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calculation of the energy without explicitly solving the problem of
motion: methods which correspond to Sommerfeld’s method of complex
integration. We shall then be able to treat perturbations of an ex-
tensive class of degenerate systems completely, which the above-
mentioned perturbation methods were not yet able to handle.

In considering a problem of f degrees of freedom specified by the
energy function H(pq), we can first select any system of matrices

by, q» whatsoever such that at all events the commutation relations

2\ ~h 9 ntickind: £~ w7
\U,, vil. L, a.l.C Da.LlDLJ.CU. ].Ul. CAO-III.PLC, vy

of noncoupled harmonic oscillators.
Then, as mentioned in ch. 2 § 1, the dynamic problem, e.g., the
determination of the pg, gx can be formulated as: A transformation

q3) —(pxqx) is to be found which leaves egs. (3), ch. 2, 1nvar1ant and

a anarov fn n in
A \JLSJ 4 WAL

GD‘

P B AUy & R |

ation Of dLIl(,t:b Cdlil 1110SL t:d.bll.y UC gldbpcu 11 or1ie
regards them as a system of coefficients for linear transformations or
bilinear forms. We therefore premise some known results of the

algebra of such forms.

LY L L / \ g L. 4l
Hermitian, i.e., if the #ransposed matriz a = (a(mn)) be equal to the

complex conjugate ot the original matrix,

then the form A4 assumes real values if in place of the variables y,
one substitutes the complex conjugate values x,:

A(xx*) = 3 a(nm)x,x;,. (1a)

nm

We recall the readily demonstrable transposition rule
(@b) = Ba 3)
and now subject the x, to a linear transformation

#n =13 v(in)y; (4)

with the aid of the (complex) matrix v=(v(ln)).
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Then the form A goes over into

A(xx*) = B(yy*) = X b(nm)yaym, (5)
nm
with
) A SRR \ . Y BN LI\ KT
U\nm) = L vknrc}u\m}v \mb N

b = vav*. (6)

This is termed the generation of a matrix b by the transformation v
applied to a.

o s ic avain of Hermiti or, with (3), ch. &
b= v*av = v*a*v = b". (7)

The matrix v is called orthogonal if the respective transformation
leaves the Hermitian unit form

E(xx*™) =X xpx;,
n

invariant; from the result derived above, this is the case if and only if

w*=1 or v*=v1, (8)

Thus, for instance, the permutation matrices mentioned in ch. 1 § 2
are real orthogonal matrices.

As is known, it is always possible for a finite number of variables to
effect an orthogonal transformation of a form into a sum of squares
(transformation to principal axes).1

A@x*) = 5 Wayays. (%)

{

For matrices, this means: a matrix exists for which
w*=1 and vav* = vav-1 =W, (10)

where W=(W 40 nm) is a diagonal matrix.

For infinite matrices, all the cases investigated so far have been
found to obey an analogous rule; it can however occur that the index #
on the right-hand side runs not only through a set of discrete numbers

1 We write the coefficients of the transformed form W, because in quantum
mechanics they stand for the ‘energy’.
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but also through a continuous range of values; this would correspond!?
to an integral constituent of (9) and the transformation (4).

The quantities W, are termed ‘eigenvalues’, their ensemble i1s the
‘mathematical spectrum’ of the form, made up of ‘point-’ and ‘con-
tinuous’ spectrum. As we shall see, this is identical with the ‘term-
spectrum’ in physics, whereas the ‘frequency spectrum’ is obtained
from this by forming differences.

This transformation to principal axes now directly presents us with

Axrmmnrmina nrahkhla i~ NAMO

Illc DUlu tion Uf our Uylld.lll.ll.« PlUUlClll Wllll.«ll bUllDlDtD .lll DCCk.lllS a
transformation (p%q%) —(pq) such that the eqgs. (3), ch. 2 are left invariant
and at the same time the energy is brought into diagonal matrix form.

By the above rules of algebra, there exists an orthogonal matrix §S

~
C*
M)

-~
"~ * L] Tod
O =1 > =

[ 1Y
—
—
—
N

-
d

)

Pk = Spys* = SppS~t,
e o (12)
Qe = 3qp>" =G>
leave
(i) the Hermitian character of p}, q) conserved also for the pg, qx;
(i1) the eas. (3). ch. 7 invariant:
(333 +h o Arvarow
(\lif) the energy
Hipa) = SH(pOqO)S2 — W (13)
Arnancrardnd 1mdbn Aiaccnnal mmadrie fAren
LUI1IVCl1 LCU 111LU Ul SU ldl 1l1iAdalllA 1Ul11ll

wish to discuss the question of the uniqueness of this solution
and in particular whether one could not generate other energy values
through another orthogonal transformation T. Let us assume that
W', as given by

TH(p%0)T-1 = W/,
is a diagonal matrix which differs from W. One would then have
TS—ISHS-1ST-1 = TS-1W(Ts-1)-1

1 Up till now, the theory of quadratic (or Hermitian) forms of infinitely many
variables has been developed mainly for a special class (‘bounded’ forms)
(D. Hilbert, Grundziige einer allgemeinen Theorie der linearen Integralgleich-
ungen; E. Hellinger, Crelles Journ. 136 (1910) 1). But here we are concerned
just with non-bounded forms. We may nevertheless assume that in the main
the rules run likewise.
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and our question is equivalent to asking whether it is possible, starting
from a diagonal matrix W to build another, W’, through te transfor.
mation

W = MWM-1, MM* =1 (14)

such that W’ can nof be derived from W by a permutation of the
diagonal elements.
However, eq. (14), ch. 3, can be written

WM — MW = 0.
and thus implies
Mmm)(Wp — Wp) = 0. (14a)

From the orthogonality of M, it follows in particular for m=n» that

S MER)E =1, T [M(En) =

k k

and consequently for a fixed # neither all the M (nk) nor all the M (kn)

can vanish. But then 1149\ ch. 3, shows that for every » there is

winaas vV ivadadide aAse ua.A\.u. \ AL DAANS vaalli v

the Wm. The same holds inverseiy.

Thus all solutions derived from (12), ch. 3, lead (for given pj, q5)
to the same values for the energies of the stationary states, in accord

with the (‘ompc’mrp stated in ch. 2 that the enermeq are always

Degenerate systems will be characterized by the fact that multiple
eigenvalues occur. The multiplicity of the eigenvalue Wy, i.e., the
number of linear independent solutions v(/n) of eq. (4), ch. 3, yields the
statistical weight of the respective state.

The importance of eq. (9), ch. 3, for our physical theory lies in the
fact that various methods! exist in the algebra of finite or bounded
infinite forms for determining the eigenvalues of a form without
actually carrying the transformation through. It is to be hoped that
such methods will prove of much avail in the future treatment of
certain physical systems.

1 For finite forms, the eigenvalues are the roots of an algebraic equation. Here,
and also for bounded infinite matrices, they can be determined, e.g., by the
method of Graeffe and Bernoulli; see, for example, R. Courant and D. Hilbert,
Methoden der mathematischen Physik 1 (Springer, Berlin, 1924) § 3, pp. 14, 15.
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2. Application to perturbation theory

Tn the following. we show that our present aleebraic concention of the
Lll CAA AJAAIJ VY 1116 ’ W WAANS VY CAALCA LV WV Le II‘ “\AAd W UUL CAAN WIS AL IJ CA\JALL JA ullc

dynamic problem not only leads to exactly those formulae which
were previously derived in ch. 1 § 4 in connection with perturbation
theory in classical mechanics, but that when applied to degenerate
systems it is considerably superior to the theory used hitherto.

We thus again assume that H has the form

H = Hg 4 AH1 + A2Hs + ...,

and that the dynamic problem specified by Ho has the solution p, ¢S.
We take these quantities as our starting coordinates from which the

+ho form accrimaead far H Anece nat hacically ranreacant any limitatinn sn
ViAWV AViIi1l2 QAOOUALIV AV I AVLVO ALV LV uuu;vu;&] L\-rl.ll» wowuvili L (—I-AAJ aiiiiivQa Livil 111
generality, inasmuch as one can obviously separate off from H a
component Hy of any desired form; however, the convergence of the

power series in 4 will depend essentially upon an apposite choice of Hy.
To rtake a principal-axes transformation of the

ANJ AL ALA

we can, as is known, proceed as follows:
We attempt to find a solution of the linear equations

Wy — S H(k)x = 0; (15)
l

this is possible only for certain values of the parameter W, namely
W=W,, when W, again denotes the eigenvalues (energy values). We
first assume that no degeneracy is present, so that all W, are different.
Then to each W, there corresponds a solution xy=x, (determined

except for a multiplicative factor), and hence the identities

Woxkn — X H(R)2%1n = O,
1
Wy, — 3 H*(RD)x;, =0
l

obtain. On multiplying the former by x;,,, the latter by xx, and sum-
ming over k, it follows on subtraction (because of the Hermitian

character of H) that

(Wp — W) T xxnxs, = 0.
k
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By choosing the proportionality factor suitably, one can normalize tq

D XgnXyg, = 1.
k

Hence the xg, form an orthogonal matrix

S = (xkn)

It is precisely this which transforms the given form to a sum of squares,
since if we substitute

Xk = 2, XknYn

n

into the form, we obtain

S H(Rl)xgx; = X X H(RD)XkmX,YmYn
kl

kl mn

= 3 3 WaXinXmymys

mn 1

(16)

xk = %9 + A 4+ 22x2 4 ...

If we substitute the above in (15), ch. 3, we obtain the approximation
equations
(a) x(W°—W3) =0,
(b) AW — Wi = —W® + 3 HO(R),
l

(17)

(€ HP(WO — Wi = — (WO 4 5PWe)

+ 3 (HO@E)SD + HO(k)).
l

It follows from (17a), ch. 3, that W has to become equal to one of the
Wk, since otherwise all 4% would vanish and we could then also infer



15 ON QUANTUM MECHANICS II 355

the vanishing of x{, x{?,... in sequence from the subsequent approxi-
mation equations.

Al LAY

If, then, we take our starting system as nondegenerate, and thus
all the W9 as different from one another, the solution of (17a), ch. 3, is

W — WoO-. 20— 0. ¥ =0 for B+ n (18)
vy T mo ““nn Jn? kn 7 TV \lv’

Herein, y) is an arbitrary number.
If we substitute this in (17b), ch. 3, we find, depending upon whether

k=mn or k+#mn,
0= y,",(—— WO + HD(nn)),
AW — W) = HO(kn)yS, k.

Thus the solution runs

WO = HOmn); 62 =y,

H (1) Bg) (19)
AL \lvrv, O A /

gD = — — — 2 9% for k#£a,
Tivo(km)

where again y{’ is an arbitrary number.
Hence it similarly follows from (17c), ch. 3, that

YAZ (D) b & )1V \ 1 A Vi H(l) (nl)H(l) (ln)
Wer=H@ (nn) —— 3
'hv' 1 1’{}(-71) ’
£2) 1 )(2)
nn n
HOENHOIn)  HO () HO (k) (20)
x(]?) — \ 2’ \""") \T"77) _ \ / \ / \ 7
" h2 T vo(kn)vo(in) h2vo(kn)2
H® (kn) ) o HD(kn) )
Tovo (k) Iwolkm) T

The solution of the third-order approximation can be derived just as
easily; we cite only the energy value:

WO = HO(wn) — — 3 HOm)H® () + HO@)HD (in)
h 7 vo(in)
( , HOGWHOUEO ) oy 5 EODH <1’(ln)>
kil

'Vo(l’)t)‘l’o (lm) 1 Y0 (ln) 2

1
T

The quantities ¥, y{,..., which for the present are arbitrary, serve
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to normalize the solution (it is orthogonal of itself); the conditiop

2 xknxzn = ]
k

yields, for
Xkn = Xy + AxS) 4+ 22202 4
the equations
Z xknxkn =1
3 (22 2D 4 x(l)x*o) =0

N viv v niv nrv

k

On substituting the solution just obtained, it follows successively that

[yal? =

04, %(1) | 4 %0,,(1) __ — 0
Ynn T Yn ¥Yn

If we now set
(p) = a p)el¢n(p) (2])

o—v\:n A 1111111 n]t?

uui uciy.

I‘O I.(l) Falot o) 1'\"\ l\""nl“‘n"’\A L o Y- Ya ki Vat aVal
n» %n -
This stands in agreement with the result we found earlier (§ J), namely

that the phases of the diagonal terms of S remain undetermined.

On substituting the values a=1,... obtained above into (21),
ch. 3, and this in turn into (18), (19), (20), ch. 3, we see that the
‘perturbation procedure’ carried through earlier yielded just the
solution for which the phases ¢{” vanish, i.e., for which the diagonal
terms of § are real.

We now turn to consideration of the case in which the starting
system is degenerate and in which W? is an r-fold eigenvalue. This
means that eq- (17a), ch. 3, has the solution

(¢]
-4
‘ P
[
o
-
(=
o
o

—_ . 0O __ .0 0 .
W = Wn» Xnn = Yi,n Xn,n+1 = Y2, n

(23)

Xn,n+r-1 = VYr, n,

xp, =0 for E#nn+1,....,n+4+7r—1.
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The left-hand side of (17b), ch. 3, then vanishes for
R=nn+1..,n+7r—1;

this yields (») equations:
r
Wyp, — S HOm +kn+ )y, =0, k=12 .7, (24)
=1

whose array of coefflclent s is agaln of Hermitian type.

vl act.uus the determinant

of the rth order for W@

pa
E; w
-
L5
o |
(¢
Lo
(@]
s ™
=

can be pursued: we
It suffices to have recognlzed that our algebralc method is able to

handle all degeneracies of finite multiplicity, i.e., that it can reduce

equation:

\ rYrs s

o)

(n, n) — HD(n, n + 1) i
+1L,n) WO —HO@m+ 1,0+ 1)]
This case obtains when two originally identical nondegenerate systems
(in which all frequencies in each of the respective systems are to be

different) are coupled through some force.
Further, the orthogonality relation

0 ..»0 __
;A:xknxkn = 1

has an interesting meaning in the case of degenerate systems. Because
of (23), this relation goes over into

r
0,+x0 __
121 ylnyln -

From this it follows that, if » denotes any number in the series
n,n+1,..., n4+7—1, and % denotes any number outside this set, the
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sums
mtrel
2, pOmkr)p™(mr),
m=n
n+r—1

X ¢Omk)qO(mk)

are uniquely determined, even for degenerate systems, e.g., the

summations are invariant with respect to those transformations
which, hv (lQ\ ch. 2. allow new and alfno'pfhpr different solut

which ch. 2, allo tions

p’, q' to arise from certain solutions p, q in the case of degeneracy.
This result provides a mathematical representation of the so-called
spectroscopic stability, which has played an important part in the

more recent theories of fine-structure intensities (cf. ch. 4).

The simultaneous appearance of both continuous and line spectra as
solutions of the same equations of motion and the same commutation

relations seemed to us to represent a particularly significant feature

both mathematically and physically, between continuous and discrete
spectra, corresponding to the difference between Fourier series and

Fourier integrals in classical theory; it therefore strikes us as desirable

1

for infinite quadratic forms has, starting from
investigations of Hilbert, explicitly been developed by Helhnger
(loc.cit.) for the case of bounded quadratic forms. If we here permit
ourselves to take over Hellinger’s results to the unbounded forms which
appear in our case, we feel ourselves to be justified by the fact that
Hellinger’s methods obviously conform exactly to the physical content
of the problem posed.

Let us first briefly examine the classical analogue to our problem,
namely aperiodic motion and its Fourier integral. Whereas in a Fourier
series a certain amplitude a(») always belongs to an oscillation exp (27i?),
in the case of a Fourier integral one has a quantity of the form @(»)d?
in place of a(v), where @(») might in a sense be conceived as an
amplitude-density per frequency interval dv. In a similarand physmally
immediately obvious manner, one can always relate all quantities
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such as intensity, polarization, etc. to a frequency interval dv between
» and v-+dv, but never to a definite frequency itself. We shall have
to expect quite similar conditions to apply in quantum mechanics.
Instead of quantities g(k) we shall have quantities of the form
g(k, W)dAW or ¢(W, W')dWdW’, depending upon whether one or both
of the two indices lie in the continuous region. Indeed, in place of the
energy W itself, there will have to be a ‘total energy’ per interval

dW, since the probability for an atom to have an absolutely definite

nnnnnnnnnnnnnnnnnnnnnnnnnnnn
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we shall in the following briefly sketch Hellinger’s mathematical

theory.
For infinite quadratic forms, the case may arise that the form

mn

- PR PR R

41 en as Py ~OrT —
tfen assuine, 111 dlld lUsy WiLil t ne ICbUlLb 10r
a

in which the original variables are connected with new variables

yn, y(p) through an ‘erthogonal transformation’; one only has to

f we again consider the linear equations (15}, ch. 3,
ka — Z H(kl)xl = 0, (27)
l

the case under review in which (26), ch. 3, contains an integral com-
ponent will occur when there are not only discrete values W, for
which these equations can be solved, but also a continuum of such
values comprising one or more ‘segments’ on the W-axis (continuous
spectrum). For any given point W of this continuum, there exists a
solution x;(W) (or several, which we for simplicity wish to exclude);
for two such W-values, W’ and W”, the equations

W xe(W') — 3 H(E)xy(W') = 0,

(28)
W (W") — 5 H* (k)x; (W) = O
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obtain, from which, as above, we conclude that

1 9 94 AN

xk(W”") = 0. (29)

xrr¢ TXTH\ TxXrs,

(W' — W") 3 (W

]

—

If one tries imposing the normalization condition

on top of these orthogonality relations, one observes that the function

of two variables
2 xx(W)x(W")
k

becomes wildly irregular, if it exists at all. The above sum does not in

Accordingly, a different type of normalization is required. With
) & N | P P
rielinger, we set
S f e (TANATTZ (T
2 |/ x(W)dW |2 = @(W). (30)

k
The series on the left-hand side is in general convergent and repre-

sents a monotonous function @(W), which apart from certain re-

of

-

= p(W®) — (W),

where W), W) are the end-points of 415. Hence if there is no overlap
between the intervals 43, 43, a zero stands on the right-hand side.

If one conceives the intervals 4;, 42, 412 to be very small, one can
symbolically write

> xx(W') AW’ -2 (W”) AW" = de(W). (32)
k

This relation prompts the suggestion that one operate generally with
the quantities xx(W) dW as ‘differential solutions’ of (27), ch. 3
whereby one has to note that the respective equations are always t0
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be interpreted in the sense of (31), ch. 3. These differential solutions
are orthogonal in the usual way, but instead of being normalized to
unity, are normalized to the differential of the basis function ¢(W).

The totality of discrete values xxy,, and of values xx(W) which are
discrete in one index and have a continuous distribution in the other,
comprises the elements of the ‘orthogonal’ matrix

S = (xkn, xk(W) dW),

which can schematicallv be represented as:

v
I

SERRERR
L
SRR

J

The orthogonality and normalization equations for the entire matrix
lit into £ yiff .

> kax;:n = Omn;
k

* . .
Y xkaxi (W) dW = 0; 3 xp(W) dW -xF, = 0; (34)
k k
’ 1, % " " __
k
A 9 9 R PRI Y Ry & N [ RECEy (PR 1.J U SR 1 A [EUSSIUIUR, . I
VvV C Cdll 4150 WIILC LI1C Ol UlUgUIldll Ly IClatlolls 101 UIC COLUIILIlS, WILICI

> XknXp, + ]

n

%* i dW *
= 3 XknXp, + ra xk(W)x (W) = é, (35)
n o
where the prime denotes differentiation, ¢’'=dge/dW.
With the aid of this matrix, we have to transform the variables

Xk into new ones, y,, y(p) dp. We set:

Yn = X2 Xkn' Xk,
k

y(g) dp = T xx(W) AW - 5. (36)
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A simple calculation then yields

X Waynyn + / Wip)y(p)y* (@) dp = % H(Rl)xxxy. (37)

n

The principal-axes transformation has thereby been carried through.

Let us now investigate which rpnrpcpnfnhnn of coordinate and

44V O vAR GV ARAN LA wovaavQ valJa alsaiiaB VN

momentum matrices is obtained w1th the aid of this orthogonal
transformation, e.g., what is meant here by the equations

p= Spﬁs_l’
(38)
q= SqOS—l,
or, generally, by
£pa) — SF(paga)S—1 (39)
NPY—=-3pPoqo0,> 07
We find, for example, four types of elements for p
p(mn) = 3 %5mpO(Rl)%1n
Kl
pm, W) AW = 3, 3, pO(Rl)x (W) AW,
M (40)

In a similar manner, instead of the amplitudes p(mn), ‘amplitude

previously declared expectation. It is, however, not necessary to take
just the energy as the continuously variable index. In place of the
energy, one could, for example, introduce the quantity ¢(W). Then
in place of p(mW) dW one would have p(mep)(dW/dg) de. Finally, in
the continuous case the energy W, is replaced by the quantity
W (@) de. In place of the energy of the individual atom, we get a sort
of total energy per interval dIW. Thence dg essentially represents the
number of atoms having an energy which lies between W and W+dW,
or the a priori probability that the energy of the atom lies between
W and W4dW. We here most clearly observe the difference between
the cases with discrete stationary states on the one hand and those
with a continuous manifold of states on the other hand, and we
can see a simple connection between the problem of statistical weights
and the question of the normalization of the solution of (27), ch. 3. In

i
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the case of discrete states when there are no multiple eigenvalues, we
make the simple physical contention that each state should have the
statistical weight 1. This was ensured by the fact that we normalized
the xgn on the basis of the requirement

SN xnLxr = 1.

hd Y RTY M

k
In the case of continuous manifolds of states, it was not possible to
fix the a priori probabilities so simply; more detailed investigations
of the problem in question are necessary for their determination and
hence also for the evaluation of the function ¢. Hence the connection
between transition probabilities and the amplitudes might also

spectra than for line spectra.
The matrices of p, q or f(p, q) represented: by (40), ch. 3, and corre-

W77
e 2
VIV Wz )

——
\-\____-.—//

The physical meaning of this scheme is self-evident.

There are four types of ‘transitions’ which to some extent furnish a
simple analogue to the ‘transitions’ postulated hitherto in the theory
of the hydrogen atom, viz. (1) from ellipse to ellipse; (2) from ellipse
to hyperbola; (3) from hyperbola to ellipse; (4) from hyperbola to
hyperbola.

One can still raise the objection against the formulae (38) and (40),
ch. 3, that manifestly in some instances the infinite sums on the right-
hand sides do not converge, and hence do not represent a function,
since of course in classical theory also, the representation of a function
f(p, q) by Fourier integrals is sometimes impossible, as for instance if
the respective functions f increase linearly with time at large times
(as is in general the case with coordinates). To this objection, one may,
however, rejoin that the observable effects of the atom (such as radia-
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tion, the force upon another atom, etc.) do not in general belong tq
this type of function, and thus that the appropriate sums of the same
type as the formulae (40), ch. 3, might indeed converge.

CHAPTER 4. PHYSICAL APPLICATIONS OF THE

1 we nf concarvatinn af mamantitm and andnlar mamantrren .
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intensity formulae and selection rules
By way of applying the general theory as established in the aforegoing

sections, we now derive the known features concerning ‘quantization

of anonlar momentum and some associated princinles
XA cLhhall thaenlicey ~nd dlhnh cnvnn 42emnn lhammsenn Ammeemcondad esradlh cmonn -
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characteristic examples involving niegration of the quantum-me-
chanical equations of motion. The previously-discussed perturbation

mechanical equations of motion coming from the decomposition of

matrix equations into components present the special difficulty that
— apart from the instance of the harmonic oscillator — infinitely many
unknowns occur in each of the separate equations. A technique

ac 1+ ceame of i
, dd 1L DCCIllLS>, Ul

cedure: By analogy with classical theory, one first seeks integrals of
the equations of motion, i.e., functions A(p, ) which on the basis of
the equations of motion and the commutation rules are constant in
function of time and consequently become diagonal matrices in the
case of nondegenerate periodic systems. Now if ¢(p, q) be any function
whatsoever, the difference

can be evaluated with the help of the commutation rules; if A is 2
diagonal matrix, a system of equations results, each of which contains
only a finite number of unknowns, namely a single component of
the matrices ¢ and ¥ (and two diagonal terms of A) in each.

If in Cartesian coordinates, H=H'(p)+H"(q), which includes the
case of relativistic mechanics, then one can see immediately that the
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components of the angular momentum I, viz.

M; = kZl(Pkkaz — QryPkz),
1/3
My = 3 (Pke9kz — QkePka) (1)
k=1
113
M, = (Pk29ky — QkzPky)
k=1

become constant under the same general conditions as in classical
theory. This is because a sum,

M, = p(q) + P(p) .

ensues for the derivative of, say, M, with respect to time, and since
all the p commute with one another, as do all the g, the quantities

The same remarks are to be applied to the linear momentum

1/3 73
— * 1 _

k=1 k=1

which likewise becomes constant. Thus the centre-of-mass theorem

holds just as in classical theory.
We immediately note here a formula which will be used later and

MMy — MMz = 3 {(Prydrz — QkuPrs) (P1Giz — quepia)
— (Pkz9kz — GkzPkz) (P1y9iz — qQuypiz)},
= % {Pryqiz(qrebiz — Pizqk2)
+ qypiz(Pke9iz — QuPie)},

h
= —2‘;1‘ % (szqky - qupky)’

Le.,

Incidentally, one can directly see from this formula that the theorem
of conservation of angular momentum invariably holds for at most
one or alternatively for all three axes, as in classical theory.
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In the following we shall assume that on treating the problem with
which we are confronted by the methods developed in the preceding
chapter we are led to obtam discrete energy values (point spectrum),
If then M,=0 for a nondegenerate system — this will for instance be
the case if forces which are symmetrical about the z-axis act upon the
atom — M, has to become a diagonal matrix:. the separate diagonal
terms are to be regarded as the angular moments of the atom about

the z-axis for the individual states of the atom. For the investigation

'h

~nf +ha 4 +hAa Almu...m.m 1o 4.1-.
Ul. LI.].C 111UL1U113 Ul L1IT CTL1CTUL LIV 111 Ll

relation

case, we

qiMz — Mzq1, = 0 (4)

tollows from (1), ch. 4, and since M, (nm)=0,mM 4, this means that

qiz(nm)(Mzn — Mzpm) = O. (5)

One sees that: For a quantum jump in which there 1s a change in the
angular momentum M, the ‘plane of vibration’ of the generated ‘spherical
wave' lies perpendicular to the z-axis.

— Furthermore,onehas

QZzMz - MzQ'lfr = — &qiy, AR
S 6)
QuyMz — MQly =  €qig,
1.e.,
qrz(nm)(Mzn — Mam) = — eqiy(nm), )
q[y(nm)(‘vlzn — l,‘a’zm) = eqlx(nm).

Thus for jumps in which no change in M, occurs, the emitted light is
linearly polarized parallel to the z-axis.
Further, from (7), ch. 4, it follows that

{(Mzn — Mem)? — (h2[472)}qin(nm) = O; n==xy. (8)

One finally concludes: For every quantum jump M, changes by O,
or by +h|2n. The light emitted in the latter case is circularly polarized,
as follows from (7), ch. 4.

In accordance with the above finding concerning the possible changes
in M,, the quantity M,, can be represented in the form

h
Mzn=*2t' (ﬂ1+C), N1 = eosy -—2,—1,0, 1,2,.... (9)
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If there were states whose angular momentum did not fit into this
set, no transitions and no interactions whatsoever could occur between
these and the states depicted by (9), ch. 4. Equation (9), ch. 4, can be
taken as a motive for splitting » into two components, one of which
is the number #;, introduced in (9), ch. 4, whereas the other, #,,
counts off the various # with the same »;. Our matrices then become
four-dimensional, and the results we found for the motions of electrons

may be summarized as:
qlz(nm) = 6n1,m1qlz(nm); (10)

Qiz(nm) = 51,|n1—m1|91x("m)’

10’
Qry(nm) = Oy i, —myGiy(nm); (107

qiz(n1, na; n1+1, ma) F iqiy(n1, na; n1-+1, mg) = 0. (107)

then

the 'quantum number” #;.
The relations (4) to (7), ch. 4 and (10), (11), ch. 4, also hold if in

place of the qjz, q1y, g1z We insert pjz, p1y, P12 Or alternatively M., My,

My(nm) = 04, jn, —my M z(nm) ; My(nm) = 6y, jn,—muyMy(nm),

7 ?

Mz(ny, no; n1t1, ma) + iMy(ng, ne; ni41, ma) = 0.

Further (cf. eq. (1), ch. 4), M2=M2=M2Z+M24M? is a diagonal
matrix with respect to #i, since .

M2M, — M,M2 = 0, (13)

(12)

For a system in which all three angular momentum conservation
theorems apply, the constant components of IR certainly cannot
collectively be diagonal matrices, since otherwise the above consi-
derations for M, to be a diagonal matrix could be applied to each of
these components, which would lead to discrepancies. Hence such a
system is necessarily degenerate.

We now set out to consider a system H=Hy+AH;+ ... of the following
type: All three angular momentum theovems are to apply for A=0. For
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A0 the system is to be nondegenerate; the constancy of Mg is to remain
undisturbed. The energy Hy s to be independent of ni. The results we
shall obtain from this investigation of the case 440 can in part also
be carried over to the degenerate system Hp, namely insofar as they
are independent firstly of A and secondly of the distingwished divection .

The assumed degeneracy of the system for =0 is expressed by the
fact that M, My, (d/d?)(M2) contain no terms of zeroth order in A,
Thus

........

V()\nllb}iu n\n”b} = U n==x%,
vo(nm)M2(nm) = 0.
Since Wy is independent of the quantum number #; introduced
Ier, nce vo(%1, #ia; M1, n2)=0, whereas vy(n1, #ia; M1, Mgy is
invariably non-zero for ns#ms, it follows from (14), ch. 4, that

(14)

(15)

13), (15), ch. 4. The double sum representing an

— /
c \
element of the matrix M), M) reduces to a simple sum

do not depend on ;). In (3), ch. 4, applied to M), M), M), we can at
any given time sum the equations which belong to a given ng over
n1 and obtain,! for fixed #s:

h
2 My(ning; ming) = 3, (n1 4 C) - = 0. (17)
On noting additionally that, by (12) and (16), ch. 4, the sum (17),
ch. 4 vanishes for every single uninterrupted sequence of the n; it
follows that at fixed ng the possible values of #;+C form an unbroken
series and lie symmetrically with respect to zero. Hence they must

' In I we already noted that in the case of a finite diagonal sum D(ab)
we always have D(ab) =D (ba).
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necessarily constitute either integer or half-integer numbers, the latter
being numbers in the series ..., —%, —4%, 1, 3,.... If for the moment
M, about the z-axis we now 1ntroduce the notatlon usually used in
the literature, namely m(h/2x) in place of (n1+4C)(h/2x), this result
accordingly shows that the selection rule m—>(m-+1, m, m—1) applies
to m and that m is either ‘integer’ or ‘half-integer’.

Our result demonstrates further that exclusion of individual states,
such as was, for example, necessary in the past theory of the hydrogen

+1h A
L11C

~ ™

~t : A 4+ v Alls haotwarann +ha alaAden A
atoim in oraer to PlCVClLL buulSlOﬂS petween the electron and

nucleus, has no place in the theory proposed here.
We now attempt to derive the selection principle for the ‘total
momentum quantum number’, as also the intensities for the Zeeman

o
D
o
=
=

effect, from our theory, pro

(¢}
CL &.
3 -
4}
wn
pud o
r 3

-l

Q
2
theory: There it is only necessary to introduce a coordinate system

whose z-axis coincides with the direction of the total angular momen-
tum; in the new coordinates the same results can be derived for M

as were previously obtained for M,. Let us accordingly set up such a

’ 4 4
) ) .

Furtner W€ can SO arrange

verything is thereby fixed,

C)
o 2

and we have
M, M,

FEYY I My T (M + )
,  Z(ME+ M2 — xM,M, — yM,M,
Y= M~/ (ME + M)

Now let us try a similar procedure in quantum mechanics. We intro-
duce the three quantities

Z; = qzMz + quuMy + qiM;, )
X1 = quyMz — Myquz, (18)
Y; = MzqiM; + MlezMy — quzMMz — MyMzQZy-
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In order to derive the desired selection rules, we still need some
commutation relations, which result from (4) and (6), ch. 4 (e=h/2xi):

bl i sslslil 2N = W22S Sos= TpEvvag o,

qizM? — M2qi; = 2e(quiMy — Mzquy) (19)
and the eq uations for gy, iz which ensue fro this on cyclic permu-
4. ~ ANV 1 £ 17\ J | .4 )

hen follows?! from (3), (4), (6) and (19), c
XiM2 — M2X; = —2¢Y,,
YiM2 — M2Y; = ¢(X;M2 + M2X;), (20)
Iz — M27Z, = 0.

These equations are fully analogous to the relations (4) and (6), ch. 4,
which determine the selection rules for M,; since we shall later show
that the qiz, qiy, qiz really can be expressed as linear functions of the
X1, Y1, Z;, with coefficients which for A=0 are constant with time, we can
determine the selection rules for M directly from (20), ch. 4. As M2is a

o
o+
b o
(@]
,.3
e-!-
e

1 The first and third formulae in eq. (20), ch. 4, result from a quite simple
calculation. The second of eqs. (20), ch. 4, can be derived in the following way:
From (18), ch. 4,

Vi = qu(Mg + MZ,) — equyMz + eMyqiz + £2qi;

MM MMy

= qiz(M?% — Mg) — eXi + €2qiz; — quaM Mz — MyM.qyy.

In the evaluation of Y;M2—M2Y; we now have to note that M2 commutes with
Mz, My, M,. Hence for the second part of the formula for Y; written above, it
follows that (cf. (19), ch. 4)

(qizMMz + MyM;qiy)M2 — M2(qiM Mz + MyM;qyy)
= 2&(qiMyMMz — M quyMMz + MyMeqizM, — MyM:Mzqi2).

On noting that (eq. (19), ch. 4) q;:M2—M2q;;=2eX;, it follows from the com-
mutation relations that

QMM Mz — MyM:M2q1. = e(MyM.q1y — qizM-My),
MyM:qiM; — MqiyM My = — Xl-Mg — e(MquyMy — quzMzM;),
and finally we obtain the desired formula (20), ch. 4:
ViMZ — M2Y; = 26X (M2 — M2 4 &%) — g(XiM2 — M2X;) + 2eX M2
— 2e2(qiaMaM; — QMM + MyM.qiy — M:Myquy)
= 2eXi(M2 — M2 1 ¢£2) — ¢(X;M2 — M2X;) + 2eXiM2 — 263X
= e(XiM2 + M2X;).
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diagonal matrix, it follows from (20), ch. 4, that

Xy(nm)(MZE, — M2 = — 2eY(nm),
Y;(’nm)(M?n — Mﬁ) = eXl(nm)(M?n + Mﬁ), (21)
Zilm) (M2, — M?) = O,

The last of the egs. (21), ch. 4, states that no vibrations take place
in Z which could entail a change in M2. It follows from the first two
equations that

h2
o {03, — b? = 5 at | =0 (22

we Nnow se = A — 1), m denotes any function
of the quantum numbers, eq. (22), ch. 4 yields

Xiynm) ((@n — am)? — 1) ((@n + am)? — 1) =0,

or, if Xy(nm) does not vanish,

Anp = +ay, + 1. (23)

There is no sacrifice of generality in taking a, as positive and =1
throughout. The a, thus constitute a series of the form C, 1+4C,
2+C,... where C denotes a constant which is =4, Setting a;=7+1%

wvielde
J‘.\/L\-‘-U
ALO / | 1I\{(LiND~\2 (DA
me =1+ L)y\nfm)s, (24)
ArnAd dth A FANlnczriomy canlandsnm vwisla MATAS FfAee
anda ine 10110wWing seiection ruie noias 10r j
7 —>31

This result is formally reminiscent of the values of M2 which enter
the Landé g-formula.

If for M, we now again introduce the designation m(%/2r), we find
from (12), ch. 4, and the relations

M2 = M2 ME -+ M2
and

(Mg + iMy) (Mg — iMy) = M2 + M2 — icM, = M2 — M2 — ieM,
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that
My(j, m—1; 7, m) + iMy(j, m—1; j, m)
=——\/((1+1 —m(m — 1)),

) ) ) ) . 25
Mg, m; 7, m—1) — iMy(j, m; ], m—1) (25)

/3
== vV (iG 4+ 1) —m@m — 1)).

For a given value of §, the maximum value mmpax of 7 is characterized
by the absence of the jumps #max—>"max—+1, i.€., the right-hand side

of (24), ch. 4, for example vanishes for such jumps. This gives

] = Mimax.

¢+ 1} ¢ . )

The calculation of the intensity formulae for the Zeeman effect, e.g.,

the dependence of q;z, qiy, 91z upon m, now appears very simple. From
(18), ch. 4, we derive the relations

qiz = (ZiM; + X; + Y)M2,

1 = (271 — ay (M \..L.u)(WM.__uM\l (26)
12/} L= iz l c) i SO\ /

,
(

Gz — 191y = [Z1 — que(M; — ie) — 1X](Mg + iMy) 72,

by solving for qiz, 91y, qiz- These equations also furnish the previously
postponed proof that the qiz, iy, g1z can be represented as linear
functions of the X;, Y;, Z; with coefficients which for A=0 are constant
with time. At the same time, eqgs. (26) ch. 4, include the desired
intensity formulae. This can be seen by first noting that the X;, Y;, Z;
are diagonal matrices with respect to m, since

Xle - MzXl == O,
YM, — M,Y; =0, (27)
Zle — MzZl == O.

Our problem now resolves itself into two parts, namely discussion of in-
tensities for jumps j—j and j—j—1 (the jumps j—j+1 then do not
provide anything new). We first consider the transitions j—j. For
these, equation (20), ch. 4 shows that only terms in Z; are present.
We shall call these terms Z;(j, m). Then, on setting M,=m(h/2n) and
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taking note of (24), ch. 4, egs. (26), ch. 4 yield:

2n m

iz(7, m) = e Z(j, m) TR

(qiz + iq1)(j, m — 1,7, m)

2 i + 1) = mim — 1
=5 am =y R

(28)
(q1z — iquy)(5, m; 7, m — 1)

SN B EL LS
Z— l7: .
7+ 1)

Finally, to establish the dependence of the quantity Z;(j, m) upon
m, we might use the relation

Mzqiy — quyMz = eqiz; (29)

it demonstrates 1n our case that £;(j, m) does not depend on m. For
the transitions j—7 we thus obtain:

QZZ(j: ) (0lx+10lu) (7; m— 1 ) 7.: ) . (qzx_iql?/)( .’ m’ j’ _1) 30\
— /fn(n.J..]\__.m(m_1\1 ATt _L1\__m(m.__.1\1 ( )
v . l!\ ] , IIIIII v L, ] , IIIII I}

ch. 4, we express the intensities in terms of X;(j, m;j—1, m), we

obtain:

Qiz(f, m; ] — 1, m) = i—2,;— Xa(j,m; g — I,M)—;.—,
@1z + iqu)(j, m — 1,7 — 1, m)
i 2 xgm == w1 X )
(q1z — iqu)(j, m; ] — 1,m — 1)
=—1—3£—Xz(7,m j—1,m) \/7(\7/?;?;)1)

In conclusion, to establish the dependence of the quantity X;(;, m
j—1, m) upon m, we again use the relation (29), ch. 4, which by way
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of a simple calculation here yields:

Xy(j, m; =1, m) = A(i, j—1)/ (j2 — m2). 2)
We thus find that
qiz(j, m; j—1, m) : (q1z + iquy)(j, m—1;7—1, m)
Hee—igqu)(, m; 1 — L m—1)=+/(72—m?) : v/ (({—m)(j—m+1)) (33)

= V([ +mi +m—1)).

The jumps j—j+1 essentially give the same intensities; we here find
that

qiz(7, m; 1+ 1, m) : (quz + igquy)(f, m; 7+1, m + 1)

We wish just to draw attention to a simple deduction from (21),
ch. 4: The jumps A7=0 occur only in the ‘Z;-direction’. If we consider

the motion of a single i i

hydrogen atom, it follows directly from (1)

R AR g S L]

11
u
£

4 Vi | 11 1

exactly the same assumptions as are introduced to derive Larmor’s
Theorem classically for the nuclear atom — namely, neglect of terms
with 2 — one can derive this theorem here. There is, nevertheless, a
certain difference between classical theory and quantum mechanics
insofar as the justification for dropping terms in 2 is concerned. The
neglect of 2 in classical theory is certainly permissible for orbits
of small dimensions and certainly ¢mpermissible for very large orbits
or indeed, hyperbolic orbits. In quantum mechanics all these orbits,
be they the innermost or the outermost, are so closely connected with
one another as a result of the kinematics specific to quantum me-

1 S. Goudsmit and R. de L. Kronig, Naturwiss. 13 (1925) 90; H. Hénl, Zs. f.
Phys. 32 (1925) 340.
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chanics, that indication of the neglect of the quantity $2 is not
immediately apparent. The probabilities of transitions to free electrons
are indeed considerable, even from the ground state.

For an oscillator, we are thus sure of the normal Zeeman effect; on
the other hand for the nuclear atom it does not seem to be entirely
excluded that the intimate connection between innermost and outer-
most orbits leads to findings which differ somewhat from the normal
Zeeman effect. However, we must emphasize that a whole set of
i e possibility of explaining the anoma-
lous Zeeman effects on this basis. Rather, one might perhaps hope
that the hypothesis of Uhlenbeck and Goudsmit might later provide
a quantitative description of the above-mentioned phenomena.

- mr1tvr el A~ f
with numerical coef-

ICI I ] em having severa

degrees of freedom. As was established in ch. 2 § 1, the commutation
rules remain invariant on simultaneous orthogonal transformation of

w
)
O
!
3
o
o,
fud
3
ln
o=
[«5)
w
A
w

1. . 1 h B

attice can be analyzed into
eigenvibrations, just as in classical theory. Each individual eigen-
vibration is to be treated as a simple linear oscillator according to the
manner discussed previously in detail, and the synthesis of the various
uncoupled oscillators to a single system is to be undertaken in the way
explained in ch. 2 § 1. The same will also apply if we go over to the
limiting case of a system with infinitely many degrees of freedom
and for instance consider the vibrations of an elastic body idealized
to a continuum or finally of an electromagnetic cavity.

In the previous quantum theory also, vibrations of an electro-
magnetic cavity constituted the subject of many detailed investi-
gations, since on the one hand the problem of the harmonic oscillator
represents just about the simplest problem which can be treated with
the methods used hitherto, and on the other hand the familiar result
that the energy of an eigenvibration should be an integer multiple
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of hv exhibits a formal similarity to the fundamental assumptions of
the theory of light quanta, so that one might hence expect to gain
insight into the nature of light quanta through the consideration of
black-body radiation. To be sure, it is clear from the very outset that
attacking the problem of light quanta from the above standpoint
cannot by any means account for the most important aspect of this
problem, namely the phenomenon of coupling of distant atoms, for
this problem does not enter at all into the formulation of our questions

rorrorrqrnn' +the vihratinone of 2 cax Vi 147 Qn

rano nag Nnn ]’\p‘l’uraan
Icgaruing the vibrations of a cav iy. >0 DL CIig all ass O

PR VA AL AVIW ¥ S

the eigenvibrations of a cavity and the light quanta postulated
formerly can nonetheless be drawn that every statistics of cavity
eigenvibrations corresponds to a definite statistics of light quanta,

and conversely.

nphvpl has attempted to arrive at such a form of statisti
mpted to arrive at such a 1orm ot statis

i—h
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1

v
brations of the cavity. In this manner he was able to derive Planck’s
formula. However such a mixture of theoretical wave and light-

quantum considerations would seem to us hardly to accord with the

of black-body radiation throughout by the more general statistical

rules applying e.g., to the quantum theory of atomic systems. The

Bose

statistics 2 T is findine hardlv seems unnatural since thic ctatictice
LCL LAV LANNI . AL ALALANAG “b ALCLA uLJ I ALY wUilidiii vuasr uL, WDALANI N CALLWD W OelAL VA VAN
Tov anmdladon o L A 2ul sl beareomdb mfon £ 0 T o Tk 1 hd s azmnme
I1dS 1101111 18 LU U0 willl e llypULllcblb Ol1 lut:pt:uut: 1L llgll L"bUll_)ubble

but rather is to be regarded as carried over from the statistics of
eigenvibrations — which just shows that the assumption of statistically
independent light-corpuscles would not meet the case correctly.
However, in each such treatment of cavity radiation by quantum
theory hitherto, one encountered the fundamental difficulty that
although it led to Planck’s law of radiation, it did not yield the correct
mean square deviation of energy in an element of volume. One thus
finds that a consistent treatment of the natural vibrations of a me-

1 P. Debye, Ann. d. Phys. 33 (1910) 1427; cf. also P. Ehrenfest, Phys. Zs. 7
(1906) 528.
2 S. N. Bose, Zs. f. Phys. 26 (1924) 178.
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chanical system or an electromagnetic cavity in accordance with past
theory leads to most serious contradictions. This caused us to hope
that the modified kinematics which forms an inherent feature of the
theory proposed here would yield the correct value for the interference
fluctuations, thus precluding the above contradictions and opening the
possibility of setting up a consistent system of statistics for black-body
radiation.
The states of the system of oscillators can be characterized by
a1 A an_ nf + 1
qucuu.u1u numbers’ 11, M2, N3,... O1 the indivi

apart from an addltlve constant the energies of th
are given by

narillatAre an +hat
voulliiailvl D’ SV Llldl
v

individual states

Eqn = h X ving. (36)
k
The additive constant, the so-called zero-point energy is
C=13h3 v (369)
k

(in particular, for the limiting case of infinitely many degrees of
freedom, it would be infinitely large). From now on, let us simply call

the quantity E, in (36), ch. 4, the thermal energy. In accordance with

o
4]
o)
o
Yo
(-
@)

4+
L
values 1, #2, #3,.... The consequ is can immediately
perceived on the basis of the following remark: If waves are propagated

with a phase velocity v in an s-dimensional isotropic part of space
V=I5 the number of eigenvibrations for the frequency range dv is
equal to the number of ‘cells’ for dv (in the Bose-Einstein sense), and
this in fact holds for arbitrary s, hence e.g. also for vibrating membranes
or strings. This follows from the fact that, if we omit consideration of
polarization properties, etc., the number of eigenvibrations for the
range dv is furnished by the solution of the problem of determining
the number of ways in which one can choose a set of positive integers

m1,... ms such that the » determined by the relation

2/
—v—vz\/(mf—{—... + m?)

falls within the interval dv. If K¢(a) be the volume of an s-dimensional
sphere of radius a, there are (V[v5)K () eigenvibrations which have a
frequency less than ». On the other hand, the number of cells for the
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range dv can be determined as follows: The momentum components
$1,..., ps of the quantum satisfy the equation

v =+/(p} + ... + p3),

and the size of the cells is %5 in the 2s-dimensional phase space. One
can see from this that the number of cells belonging to a frequency
lower than » is also equal to (V[v$)K,(v).

Hence, as mentioned above, one can effect a one-to-one corre-
spondence of cells to eigenvibrations such that the individual pairs
always belong the same dv. This correspondence can, incidentally,
be so carried out that the directions of an eigenvibration and those

of the light quanta in the respective cell fall within the same infini-

tesimal angular range. From (36), ch. 4, the quantum number of an
mrorallatng 1c 4han 4~ Lo cnd Aeica 1 4~ dbn censanalise. ~d ez ~ aner Ao
oSovibarr 1> L1icil L e >SEL CL_[ udlir LU LIIE rnwrnucer U/ gwuntu vty e ap-

ated statistics of natural vibrations and conversely. It can be seen
that the statement made above concerning the weighting of the

states of the system of oscillators goes directly over into the basic
equally probable complexions are defined through a declaration of
the number of quanta sitting in each cell.!

In Debye statistics, the number of oscillators involving 7 quanta

L e—r(hv/icT), (37)
7

and Planck’s law arises from

o 1
o~ (ho[kT) _ , .

r§1 ehv/kl' —1

It is unsatisfactory that eq. (37), ch. 4, holds only for >0 and does

not also give the number of oscillators involving no quanta. From

the new point of view, we have to replace (37), ch. 4, according to

1 A. Einstein, Sitzungsber. d. Preuss. Akad. d. Wiss. (1925) p. 3. Our consider-
ations naturally cannot yield any fresh viewpoint for the valuation of Einstein’s
hypothesis that this form of statistics is also applicable to an ideal gas.
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Bose, ! by
(l _ e-—hv/kT) e-—r(hv/kT); (38)

which (to use the terminology of the theory of light quanta) gives the
number of ‘r-fold occupied cells’, and Planck’s formula results from

1
1

ehv/kT — 1 !

1’(1 __ ehv/kT) e—r(hv/kT)

Mg

r

The light-quanta statistics corresponding to Debye’s vibration sta-
tistics is represented by the theory developed by WolfkeZ and Bothe.3
To be sure, these authors do not speak of r-fold occupied cells, but

A ahAtsra antianad chArdrAarminoe ~F Alacci~rnal sxraxra
11T AU VC-111CTiillLi1viiTUuU Dllul L\/UIIIIILSD Ul Lla>d>itdl vwdyvcl

theory become evident in the study of energy deviations in the
radiation field as follows: If there is communication between a

volume V' and a very large volume such that waves having frequencies

hich Lie withi 0 1 hindered. {

+ha N
LilT Vv

: I vin v,
then according to Einstein the mean square deviation A2=(E —E)2
can be calculated by an inversion of the Boltzmann Principle. If

cv~leicoann o~ 4L A4 C
VUJ.UJJIC, S0 Lllal
E—_2" .y (39)
ehv/kT 1
then 1t follows that
— _ E2
2 = wE + 40
2V (40)

If, however, one calculates the energy deviations from nferferences
in the wave field, classical theory yields only the second summation

1 This expression naturally has to be assumed for example also in the case of
elastic waves in a continuum, which necessitates a certain modification to
considerations by Schrédinger (Phys. Zs. 25 (1924) 89) concerning the thermal
equilibrium between light- and sound-beams. This modification can easily be
carried out in analogy with the probability theorem for the Compton effect
on assuming Einstein’s gas theory to be valid, as has earlier been pointed out
(P. Jordan, Zs. f. Phys. 33 (1925) 649).

2 M. Wolfke, Phys. Zs. 22 (1921) 375.

3 W. Bothe, Zs. f. Phys. 20 (1923) 145; 23 (1924) 214.
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term in (40), ch. 4, as has explicitly been shown by Lorentz.l This
discrepancy naturally also exists quite generally for such waves as
those in a crystal lattice or in an elastic continuum. According to
Ehrenfest,2 its origins are to be sought in the fact thatin the Einstein
treatment, additivity of the entropies of V and of the large volume was
assumed. However, this additivity of entropies applies, according to
the classical theory of natural vibrations, only in the region of validity

of the Rayleigh—]eans Law. Precisely the nonexistence of statistical

Anﬂn Af +ha valiirnae alarmandtc in +ha o al raga 10 cn 1mmmnatirral
\S v PCLLLLCU.bC Ul LllC VUlUlllT CTITI11ITLILD 111 L11T SClLCl al \.«CLDL/ 10 OV ulllilaiLtulal

.-l

a result of the theory of cavity radiation to date that one is obliged
to conclude that this theory breaks down even in the simple problem
of the harmonic oscillator.

We now calculate the mean square dev1at10n 2 from the inter-
10N

nantum mechanice To av
A »J & (e

AALCUAZLL ALLIUVALIQLLILAUD .

ourselves on the simplest conceivable case, namely a vibrating string
fastened at its ends. Incidentally, all essential points of the calculation

can immediately be taken over in more general instances. We first
cite the classical approach

it

al dAignlacarment K©
dal aispiacemment o
a

u(x,t) = 3 gi(t) sink Tx (41)
fo=

or

) e~

qx(t) = %

fu(x, t) sin k —7Z—x dx (417%)
0

as coordinates, the energy of the string goes over into a sum of squares.
Namely, for suitable choice of units,
1

nol | { v (S e = - 5 vt + (+7) qk(t)Z}. (42

0

1 H. A. Lorentz, Les Théories Statistiques en Thermodynamique (Leipzig,
1916), p. 59.

2 P. Ehrenfest, Lecture in the Go6ttingen seminar on the Structure of Matter,
Summer 1925. The contents of this lecture were of great assistance to our
present considerations. Meanwhile published in Zs. f. Phys. 34 (1925) 362.
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More generally, for the energy E in a segment (0, a) of the string, we

obtain

E lfg T

= — SIn7 — X S1n R —

7 ) I (desing g ;
0

NEAY T 7
+ q59K)k ) €081 —l—x cos & 5 ¥ dx.  (43)
If in (43), ch. 4, we take only the terms with j=#, we find (under the
explicit assumption that all wavelengths which come into consi-
deration are small with respect to a) just the value (a/l)H. From this

one sees: The difference

7]
i,

wherein the bar represents an average over the phases gy in

b
"

7T
L omno ) e ey s — (A
T Yk, wg — l ’ \T

can be derived from (43), ch. 4, by omitting terms of the sum which

have j=Fk. This phase average is identical with the time average.

—On carrying out the integration, one then finds

with

7 7

sm(y——k)Ta sm(y—l—/e)—l—a
Kk = r 7
(1-k)7 (7'+k)7

__ sin (w; — wg) a sin (w; + wg) @

a wj — Wk wj + wy ’
(45)

sin (] — &) %a sin (7 + &) %a
K = 7 + 7
G~ i+m >

_sin (wj — ox) a n sin (w; + wg) a

wj — Wk w; + wg
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In consideration of later quantum-mechanical calculations, we write

out the mean square deviation 42 explicitly. It is
2 2

A2 = (A1 + A3)2 = A7 + A5 + 4142 + A4, (46)
with

l [o%e) o0 f

2 2 ¢ o e

Ai+d3=— T X 1919%§dxK kK x

1 F. k=1 ¢, =1

T#k  1#x

1 o0

Mdas + Ay = — 3
k=

£k

+ wgigrq gnK K, }.  (46")

Equation (44), ch. 4, implies A;ds+4ds41=0 and

If we now let the string’s length / become very large, the wy get ever
closer together, according to (44), ch. 4, so that the sum (47), ch. 4,

goes over into an integral:

Finally, we also assume the ‘volume’ a4 to become very large and
employ the relation

Q'
1 in2
lim — | - fw)dw = #f(0) for 2,2 >0. (48)
a—soco 4 w
-0

We then see that only the first sum terms (sin (wj—wk)a)[(wsj—wk)
in (45), ch. 4, provide an appreciable contribution, and we find for
(47'), ch. 4, ‘

=2 [ aot@® + wiio. (49)
0
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On the other hand, by (42), ch. 4, the mean energy in the volume «
becomes equal to

fw—%ﬁ+ﬁﬁ=ﬁLﬁM%+w%}6®
T 47 v

0

l
4

Therein we have

Go = ©?q,, (51)
a relation which, as we would recall, remains valid in quantum theory
too, according to ch. 1. In order to obtain the quantities A2, E em-
ployed in (39), (40), ch. 4, we have merely to extract those parts

referring to dv=dw/2xn from (49), (50), ch. 4, and to divide these by
dv. With v=a we then obtain

. L2
A
A2 =—r0 (52)
v
) ) y— 4,
7T
dwk = 2n dvk = — dk
/A
TL e~ 1M iy A m Lk o amcmmmiemn)es Al aaem dme . S AN
1 11C1ICC \Oé}, Cll. 4, 1lil 1dCti slVCb PIULIDCI_Y tne bCLUIl(_l LEITI1 111 k‘fU),
ch. 4

On going over to quantum mechanics, we have to regard (41, (41’),

(42), (43), ch. 4, as matrix equations for u, H, q, E. The quantity x«,

however, remains a number, since if in place of the continuous string

A vizaRiaal AaisasdrSa Dasalow aa 1iiany

we consider an elastic series of points, x would denote the number
(multiplied by the lattice constant) of any given point.

The matrix qx has 2f dimensions if f be the number of eigenvibrations,
1.e., infinitely many in the case of an elastic string. Each of the com-
ponents qr(nm) of qx vanishes except for those with

nj —my =0 for ] # k,} (53)

ny — mrp = 4+ 1.
The phase average of a matrix is that diagonal matrix which coincides
with the diagonal of the respective matrix. From (53), ch. 4, in part
similar conclusions can be drawn to those derivable from (44), ch. 4.
The considerations which formerly led to (46), (46'), (46"), ch. 4, remain
valid in quantum theory. The formulae (47), (47°), ch. 4 with matrices
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qx also hold for the diagonal matrix A%+ A2 and finally, according to
(52), ch. 4, if we denote those parts of 42 which belong to a given
frequency » as 42, we find

*2

- (52')

I \ 7

A 4+ A% =

The quantity E* in (52'), ch. 4, is, by (49), (50), (51), ch. 4, no longer
the mean thermal energy, but rather the sum of this and the zero-poins
energy: from the elementary oscillator formulae, we have

E*=m-V L+ E,

&
+
o
o B9
I
[
=
<
[
<
+
>
=2
=
+

(54)

in just the same way as 4

ch. 4, the expression:

o0
A A A al? lﬂ d 2f(a,a.,)2 - | )21
443 + A4, = J dw w9 {Gwfw)® + (qudw)}.
8x
0
However, since the quantity }/ is, from (42), ch. 4, to be regarded as
the ‘mass’ of the resonators, the commutation rules give us
L (nm) = aja5(nm) 1 2 & h
—q;q;(nn) = q;9;(nn) = — -~ = i
2 I 2m 2lm

Hence the part 4143+A494; of 4143+ 434, which belongs to dw is,
after division by dv, equal to

149 4+ Aoy = —3()2V,
and, with (54), ch. 4, we have in fact

A2 = wE 4+ — 55
v+z,,V (%)

which agrees with (40), ch. 4.



15 ON QUANTUM MECHANICS II 385

If one bears in mind that the question considered here is actually
somewhat remote from the problems whose investigation led to the
growth of quantum mechanics, the result (55), ch. 4, can be regarded
as particularly encouraging for the further development of the theory.

From Ehrenfest’s finding mentioned above, one could save oneself
calculation of energy deviations involving interference considerations
and at the same time acquire the assurance that also for other similar
problems no contradictions are possible — if the add1t1v1ty of the

rarine Af vvAaliirma ala ntc ~rn1 A diractly he DTOY n:uq n +ha quan 41
TOpices O VOIUIIC €leImentts Coulda air CCLly 181§ pLovea il ine Jua nium

mechanics of wave fields. Our above findings lead us to expect th

additivity to hold generally.
The reasons leading to the appearance in (55), ch. 4, of a term which

is not provided by the classical theory are obviously closely connected

v
"x'7i+ the reasons for occurrence of a zero-noint enerov. The basic
Lil Lilv 1uvAuovililo AL vvuvuliriviive AV S Y7L Qg yu;x;t— \/JLVLDJ P Ay YW KaolLw
I 4 4 DU I IR [ Y A Ll A4 e~~~ LSl i
Ll GICIILB DCLWCG 1 e tieoly PIUPUDCU Iere anda tndt usSed nitnerto

in both instances lies in the characteristic kinematics and not in a
disparity of the mechanical laws. One could indeed perceive one of

the most evident examples of the difference between quantum-

whatsoever.
If the quantum mechanics proposed here should prove to be correct

even in its essential features, we might quite generally designate the

in classical theory, and that the new fundamental viewpoints, stem-
ming as they do from the basic postulates of quantum theory for the
mechanical concepts together with the concepts of space and time,
find adequate expression in kinematics just as in mechanics and in the
connection between kinematics and mechanics.



