Formalismo de Keldysh


F. P. Marín
> <
Menu

Respuesta Lineal

En esta sección estudiamos la respuesta lineal del sistema:

Con tales condiciones, la expresión para $I_{\eta}$ se reduce a: \begin{align*} I_{\eta} & = {2\pi e \over h}\,\int_{-\infty}^{\infty}\dd\omega\,\rho\pars{\omega} \sum_{\eta'}\bracks{% {\Gamma_{\eta} \over \Gamma}\ \ob{\Im\Sigma_{\eta'}^{<}\pars{\omega}} {\ds{2\Gamma_{\eta'}\fermi\pars{\omega - \mu + eV_{\eta'}}}} - {\Gamma_{\eta'} \over \Gamma}\ \ob{\Im\Sigma_{\eta}^{<}\pars{\omega}} {\ds{2\Gamma_{\eta}\fermi\pars{\omega - \mu + eV_{\eta}}}}} \\[3mm]&= {4\pi e \over h}\,{\Gamma_{\eta} \over \Gamma} \int_{-\infty}^{\infty}\dd\omega\,\rho\pars{\omega} \sum_{\eta'}\Gamma_{\eta'}\bracks{% \fermi\pars{\omega - \mu + eV_{\eta'}} -\fermi\pars{\omega - \mu + eV_{\eta}}} \\[3mm]&\sim {4\pi e^{2} \over h}\,{\Gamma_{\eta} \over \Gamma} \int_{-\infty}^{\infty}\dd\omega\,\rho\pars{\omega}\, \partiald{\fermi\pars{\omega - \mu}}{\omega} \sum_{\eta'}\Gamma_{\eta'}\pars{V_{\eta'} - V_{\eta}} \\[3mm]&= -\,{4\pi e^{2} \over h}\,{\Gamma_{\eta} \over \Gamma}\bracks{% \partiald{}{\mu} \int_{-\infty}^{\infty}\dd\omega\,\rho\pars{\omega} \fermi\pars{\omega - \mu}}\sum_{\eta'}\Gamma_{\eta'}V_{\eta'} +{4\pi e^{2} \over h}\bracks{% \partiald{}{\mu} \int_{-\infty}^{\infty}\dd\omega\,\rho\pars{\omega} \fermi\pars{\omega - \mu}}\Gamma_{\eta}V_{\eta} \\[5mm] \end{align*} tal que $\ds{I_{\eta} = \sum_{\eta'}{\cal G}_{\eta\eta'}V_{\eta'}}$ donde
\begin{align*} {\cal G}_{\eta\eta'} &\equiv \pars{\Gamma_{\eta}\delta_{\eta\eta'} - {\Gamma_{\eta}\Gamma_{\eta'} \over \Gamma}}\gamma\,,\quad \\[3mm]&\!\!\!\!\!\!\!\!\!\!\mbox{Note que}\quad \left\vert\begin{array}{l} \phantom{\sum_{\eta}}{\cal G}_{\eta\eta'} = {\cal G}_{\eta'\eta}&& \\ \sum_{\eta}{\cal G}_{\eta\eta'} = \sum_{\eta'}{\cal G}_{\eta\eta'} = 0 \end{array}\right. \\[3mm] \gamma &\equiv {4\pi e^{2} \over h} \partiald{}{\mu}\int_{-\infty}^{\infty}\dd\omega\, \rho\pars{\omega + \mu}\fermi\pars{\omega} \end{align*}
\begin{align*} \gamma &= {4\pi e^{2} \over h}\,\partiald{}{\mu}\int_{-\infty}^{\infty}\dd\omega\, {\Gamma/\pi \over \pars{\omega + \mu - \epsilon + eV_{G}}^{2} + \Gamma^{2}}\, \fermi\pars{\omega} \\[3mm]&= {4\pi e^{2} \over h}\,\partiald{}{\mu}\braces{\half - {1 \over \pi}\, \Im\Psi\pars{% \half + {\Gamma + \bracks{\epsilon - \mu - eV_{G}}\ic \over 2\pi\kb T}}} \\[3mm]&= {4\pi e^{2} \over h}\,\pars{-\,{1 \over \pi}}\, \Im\braces{\Psi'\pars{% \half + {\Gamma + \bracks{\epsilon - \mu - eV_{G}}\ic \over 2\pi\kb T}} \pars{-\,{1 \over 2\pi\kb T}\,\ic}} \end{align*}
$$ \gamma = {4 e^{2} \over h}\,{1 \over 2\pi\kb T}\,\Re\Psi'\pars{% \half + {\Gamma + \bracks{\epsilon - \mu - eV_{G}}\ic \over 2\pi\kb T}} $$ Algunos valores particulares vienen dados por: $$ \gamma = \left\lbrace\begin{array}{lcl} {4\pi e^{2} \over h}\, {\Gamma/\pi \over \pars{\mu - \epsilon + eV_{G}}^{2} + \Gamma^{2}} ={4\pi e^{2} \over h}\,\rho\pars{\mu} & \quad\mbox{si}\quad & {\verts{\Gamma + \pars{\mu - \epsilon + eV_{G}}\ic} \over 2\pi\kb T} \to \infty \\[3mm] {\pi e^{2} \over h}\,{1 \over \kb T} & \quad\mbox{si}\quad & {\verts{\Gamma + \pars{\mu - \epsilon + eV_{G}}\ic} \over 2\pi\kb T} \gtrsim 0 \end{array}\right. $$

Un Ejemplo Particular

I0 I1 I2 I3 = 0 GC En este caso particular solo ilustramos, por simplicidad, cuatro reservorios. En uno de ellos el flujo de carga se establece igual a cero $\pars{~I_{3} = 0~}$ tal que $I_{0} + I_{1} + I_{2} = 0$.
$$ \pars{\begin{array}{c}I_{0} \\ I_{1} \\ I_{2} \\ I_{3}\end{array}} = \pars{\begin{array}{cccc} {\cal G}_{00} & {\cal G}_{01} & {\cal G}_{02} & {\cal G}_{03} \\ {\cal G}_{10} & {\cal G}_{11} & {\cal G}_{12} & {\cal G}_{13} \\ {\cal G}_{20} & {\cal G}_{21} & {\cal G}_{22} & {\cal G}_{23} \\ {\cal G}_{30} & {\cal G}_{31} & {\cal G}_{32} & {\cal G}_{33} \end{array}}\ \pars{\begin{array}{c}V_{0} \\ V_{1} \\ V_{2} \\ V_{3}\end{array}} $$ En el ejemplo presente, por simplicidad, escogemos $\ds{\Gamma_{\eta} = {1 \over 4}\,\Gamma}$ tal que $\ds{{\cal G}_{\eta\eta} = {3 \over 16}\,\gamma\Gamma}$ y $\ds{\left.{\cal G}_{\eta\eta'}\right\vert_{\eta \not= \eta'} = -\,{1 \over 16}\,\gamma\Gamma}$: $$ \pars{\begin{array}{c}I_{0} \\ I_{1} \\ -I_{0} - I_{1} \\ 0\end{array}} = {1 \over 16}\,\gamma\Gamma\, \pars{\begin{array}{rrrr} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ -1 & -1 & -1 & 3 \end{array}}\ \pars{\begin{array}{c}V_{0} \\ V_{1} \\ V_{2} \\ V_{3}\end{array}} $$ $$ \imp\quad \left\lbrace\begin{array}{cclcl} I_{0} & = & {1 \over 16}\,\gamma\Gamma\,\pars{3V_{0} - V_{1} - V_{2} - V_{3}} & = &\phantom{-\,} {4 \over 3}\,\gamma\Gamma\, \bracks{2\pars{V_{0} - V_{2}} - \pars{V_{1} - V_{2}}} \\[1mm] I_{1} & = & {4 \over 3}\,\gamma\Gamma\,\pars{-V_{0} + 3V_{1} - V_{2} - V_{3}} & = & -\,{4 \over 3}\,\gamma\Gamma\, \bracks{\pars{V_{0} - V_{2}} -2 \pars{V_{1} - V_{2}}} \\[1mm] I_{2} & = & -I_{0} - I_{1}&& \\[1mm] 0 & = & {1 \over 16}\,\gamma\Gamma\,\pars{-V_{0} - V_{1} - V_{2} + 3V_{3}} & \imp & V_{3} = {V_{0} + V_{1} + V_{2} \over 3} \end{array}\right. $$ Note que $V_{3}$ debe escogerse igual a $\pars{V_{0} + V_{1} + V_{2}}/3$ para garantizar que el flujo de carga desde el $\mbox{reservorio-}3$ se anule. Escogiendo $V_{2} = 0$ ( origen del potencial eléctrico ):
\begin{align*} I_{0} &= \phantom{-\,}{4 \over 3}\,\gamma\Gamma\,\pars{2V_{0} - V_{1}} \\[3mm] I_{1} &= -\,{4 \over 3}\,\gamma\Gamma\,\pars{V_{0} - 2V_{1}} \\[3mm] I_{2} &= -\,{4 \over 3}\,\gamma\Gamma\,\pars{V_{0} + V_{1}} \\[5mm] V_{3} &= \phantom{-\,}{V_{0} + V_{1} \over 3} \end{align*}
> <
Menu